欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > 气体分配> 一种基于插值拟合的金属管道腐蚀系数测量方法独创技术12033字

一种基于插值拟合的金属管道腐蚀系数测量方法

2021-03-19 17:06:50

一种基于插值拟合的金属管道腐蚀系数测量方法

  技术领域

  本发明涉及测量技术,特别是涉及一种基于插值拟合的金属管道腐蚀系数测量方法。

  背景技术

  在石化行业中,金属管道大部分埋于地下或者水中,当金属管道和周围土壤或水接触作用发生电化学反应而导致金属管道的破坏被称之为金属管道的腐蚀。由于这种电化学反应导致管道的破裂不仅会造成大量的经济损失,更可能引起爆炸或大面积的环境污染等许多安全事故。因此,准确地测量出金属管道的腐蚀系数,是排除事故隐患、制定合理的管道防腐计划和延长金属管道使用寿命的保障,也是石油与化工行业所迫切需要的技术之一。

  现有的通过求解Robin反问题从而无损检测金属管道腐蚀系数的方法主要有有限元法、边界积分方程方法、边界元方法、基本解方法等。由于实际工程中大部分金属管道埋于地下或水中,可接触的边界一般仅有部分物理边界,因此,边界型数值算法比区域型方法有特殊的优势。有限元法是目前应用最广泛的一种数值算法,但它需要在整个求解域上进行离散,因此对于几何区域复杂和无限域问题较难处理。边界元方法是一种典型的边界型数值算法,在计算反问题上应用广泛。然而边界元法选用含奇异性的基本解作为插值基函数,不可避免地需要处理费时费力的奇异积分计算问题。边界粒子法作为一种新型无网格方法,可消除网格依赖缺陷,无需积分,收敛速度快,并且可以很好地处理非齐次问题。利用基于边界粒子法插值拟合技术测量金属管道腐蚀系数,形式简单,计算快,精度高。

  因此,基于插值拟合技术测量金属管道腐蚀系数在石油化工等工程领域都具有积极的应用价值和实践意义。

  发明内容

  发明目的:本发明的目的是提供一种精确、稳定、高效的基于插值拟合的金属管道腐蚀系数测量方法,以减少测量时间,提高测量效率和精度。

  技术方案:本发明的基于插值拟合的金属管道腐蚀系数测量方法,包括以下步骤:

  (1)获得金属管道可测边界上的电位势和电流数据;

  (2)通过构造微分算子消除管道内电荷的影响;

  (3)利用步骤(1)中获得的电位势和电流数据通过插值拟合得到待定系数;

  (4)确定金属管道不可测边界上任意位置处的电位势与电流数据;

  (5)计算金属管道腐蚀系数。

  进一步的,步骤(1)中具体包括,在金属管道的可接触边界上施加预设的电流,使得区域内部产生一个电场,区域内电位势会满足泊松方程:

  Δu(x)=f(x),x∈Ω;

  其中,Δ为拉普拉斯算子,x为点的坐标,u(x)为x点处的电位势,f(x)为管道内的电荷密度,Ω为管道区域包括内部与表面;并在金属管道可接触边界上放置N个探针,测量得到电位势和电流数据,从而得到边界条件为:

  

  

  其中,表示金属管道可接触边界上的电位势数据,表示金属管道可接触边界上的电流数据,Γc表示金属管道的可测边界,n为金属管道的可测边界Γc上的单位外法线向量。

  进一步的,步骤(2)中通过构造微分算子消除管道内电荷的影响,将非齐次方程转化为高阶齐次方程:

  LM...L2L1Δu(x)=0,x∈Ω;

  其中,LM,...,L2,L1均为消除管道内电荷影响的微分算子,Δ为拉普拉斯算子,x为点的坐标,u(x)为x点处的电位势。

  进一步的,为使上述高阶齐次方程有唯一解,附加边界约束条件为:

  

  其中,Δ为拉普拉斯算子,x为点的坐标,u(x)为x点处的电位势,Γ为管道的表面,LM-1,...,L2,L1均为消除管道内电荷影响的微分算子。

  进一步的,步骤(3)中插值拟合的计算表达式为:

  

  

  其中,表示金属管道可接触边界上的电位势数据,表示金属管道可接触边界上的电流数据,Γc表示金属管道的可测边界,n为金属管道的可测边界Γc上的单位外法线向量,αij为待定系数,为作用算子Li的非奇异径向基函数通解,M为微分算子的个数,N为金属管道上探针的个数,采用Tikhonov正则化技术处理病态插值矩阵。

  进一步的,步骤(4)中金属管道不可测边界上任意位置处的电压与电流数据通过插值拟合计算公式得到,插值拟合的计算表达式为:

  

  

  其中,V(x)和I(x)分别表示x点处的电位势数据和电流数据,Γ表示金属管道的边界,n为金属管道边界Γ上的单位外法线向量,αij为待定系数,为作用算子Li的非奇异径向基函数通解,M为微分算子的个数,N为金属管道上探针的个数。

  进一步的,步骤(5)中金属管道腐蚀系数通过将步骤(4)中得到的电压与电流数据代入下式后获得:

  

  其中,k为金属管道的腐蚀系数,I(x)为电流数据,V(x)为电位势数据,Ta为周围介质中的电位势数据。

  有益效果:与现有技术相比,本发明通过在金属管道的可接触边界上施加一定的电流,通过插值拟合技术求解Robin反问题,并采用Tikhonov正则化技术处理病态插值矩阵,保证结果的精确与稳定,从而能无损并精确地测量金属管道地腐蚀系数。该发明的特点是,仅需金属管道可接触边界上的电位势与电流信息,不破坏管道结构,满足实际工程中无损检测的要求,且技术特点简单,方便工程技术人员的使用。本发明能为石油与化工行业排除事故隐患、制定合理的管道防腐计划和延长金属管道使用寿命提供保障,具有重要的工程意义。

  附图说明

  图1为本发明方法流程图;

  图2为金属管道可接触边界上数据采集点示意图;

  图3为金属管道可接触边界占总边界1/2和3/4时的截面数据采集点示意图;

  图4为金属管道可接触边界占总边界1/2时测量得到的腐蚀系数;

  图5为金属管道可接触边界占总边界3/4时测量得到的腐蚀系数。

  具体实施方式

  下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

  如图1所示,本发明基于插值拟合的金属管道腐蚀系数测量方法,包括以下步骤:

  (1)获得金属管道可测边界上的电位势和电流数;

  确定测量对象,然后在金属管道的可接触边界上施加一定的电流,使得区域内部产生一个电场,区域内电位势会满足泊松方程:

  Δu(x)=f(x),x∈Ω;

  其中,Δ为拉普拉斯算子,x为点的坐标,u(x)为x点处的电位势,f(x)为管道内的电荷密度,Ω为管道区域包括内部与表面。并在金属管道可接触边界上放置N个探针,测量得到电位势和电流数据,从而得到边界条件为:

  

  

  其中,表示金属管道可接触边界上的电位势数据,表示金属管道可接触边界上的电流数据,Γc表示金属管道的可测边界,n为金属管道的可测边界Γc上的单位外法线向量。

  (2)通过构造微分算子消除管道内电荷的影响;

  通过构造微分算子消除管道内电荷的影响,其基本思想是构造复合微分算子,作用在管道内的电荷密度f(x)上,使其趋向于0:

  

  其中,Lm,...,L2,L1为相同或不同的微分算子。将上式中消去f(x)的微分算子取有限项或根据误差数值截断M项,则泊松方程可转化为如下高阶齐次方程:

  LM...L2L1Δu(x)=0,x∈Ω;

  为使上述高阶齐次方程有唯一解,附加如下边界约束条件:

  

  其中,Δ为拉普拉斯算子,x为点的坐标,u(x)为x点处的电位势,Γ为管道的表面,LM-1,...,L2,L1均为消除管道内电荷影响的微分算子。

  (3)利用步骤(1)中获得的电位势和电流数据通过插值拟合得到待定系数;

  插值拟合的计算表达式为:

  

  

  其中,表示金属管道可接触边界上的电位势数据,表示金属管道可接触边界上的电流数据,Γc表示金属管道的可测边界,n为金属管道的可测边界Γc上的单位外法线向量,αij为待定系数,为作用算子Li的非奇异径向基函数通解,M为微分算子的个数,N为金属管道上探针的个数,采用Tikhonov正则化技术处理病态插值矩阵。

  (4)确定金属管道不可测边界上任意位置处的电位势与电流数据;

  金属管道不可测边界上任意位置处的电位势与电流数据可以通过如下计算表达式得到。

  

  

  其中,V(x)和I(x)分别表示x点处的电位势数据和电流数据,Γ表示金属管道的边界,n为金属管道边界Γ上的单位外法线向量,αij为待定系数,为作用算子Li的非奇异径向基函数通解,M为微分算子的个数,N为金属管道上探针的个数。

  (5)计算金属管道腐蚀系数。

  金属管道腐蚀系数通过将步骤(4)中得到的电位势与电流数据代入下式后获得:

  

  其中,k为金属管道的腐蚀系数,I(x)为电流数据,V(x)为电位势数据,Ta为周围介质中的电位势数据。

  实施例1

  考虑如图2所示的金属管道区域,区域方程为:

  {(x,y,z)|x=(R+r cosφ)cosθ,y=(R+r cosφ)sinθ,z=r sinφ,0≤θ≤0.5π,0≤φ<2π};

  其中,x,y,z表示笛卡尔坐标系下的坐标值,r,θ,φ表示球坐标系下的坐标值,R=3,r=1,电位势与电流数据数据采集点如图2所示。区域的边界被分割成不相交的两部分,可测边界为:

  

  不可测边界为:

  

  其中,x,y,z表示笛卡尔坐标系下的坐标值,r,θ,φ表示球坐标系下的坐标值,θc表示可测边界的角度。图3(a)和3(b)分别表示θc=π和的情况,即金属管道仅有1/2和3/4表面区域可测。在金属管道可接触边界上放置40个探针,测量得到电位势和电流数据。管道内的电荷密度为f(x)=6,消除管道内电荷影响的微分算子为Δ。图4和图5分别比较了在不同测量误差e下利用本文技术测量得到的腐蚀系数和精确的腐蚀系数,从图中可以看出本文所提技术测量得到的腐蚀系数的精确性较高,与精确的腐蚀系数吻合较好。

  综上,本发明是一种基于插值拟合测量金属管道腐蚀系数的技术,以插值拟合为基础,仅需在金属管道的可接触边界上施加一定的电流,通过探针测量得到金属管道上的电位势和电流数据,然后通过插值拟合求解Robin反问题,并采用Tikhonov正则化技术处理病态插值矩阵,保证结果的精确与稳定,从而能无损并精确地测量金属管道地腐蚀系数。该发明的特点是,仅需金属管道可接触边界上的电位势与电流信息,不破坏管道结构,满足实际工程中无损检测的要求,且技术特点简单,方便工程技术人员的使用,是测量金属管道腐蚀系数的一种新技术。本发明能为石油与化工行业排除事故隐患、制定合理的管道防腐计划和延长金属管道使用寿命提供保障,具有重要的工程意义。

《一种基于插值拟合的金属管道腐蚀系数测量方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)