欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > 发动机装置> 利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法独创技术9581字

利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法

2021-02-09 14:55:22

利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法

  技术领域

  本发明涉及吸气式高超声速飞行器技术领域,更具体地说,它涉及利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法。

  背景技术

  斜爆震燃烧组织方法是高马赫数飞行中的一种新型燃烧组织方法,通过激波发生装置(如,斜劈、锥体等)来实现斜爆震的起爆,如图1所示。根据经典的斜爆震起爆能量准则和化学动力学准则可知,实现斜爆震的起爆需要斜劈具有足够的尺寸和角度,且来流静压要足够高。然而,从高速推进的角度来看,大尺寸和大角度的斜劈会带来较大的阻力,且较高的来流静压意味着较高的进气道压缩程度,故也意味着较大的进气道阻力和总压损失。

  发明内容

  为解决上述技术问题,本发明提供了利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法,能够在较低的来流静压和小尺寸、小角度斜劈上起爆斜爆震波。

  本发明的上述技术目的是通过以下技术方案得以实现的:

  利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法,包括以下步骤:

  S1:在激波发生装置处加设瞬时能量源发生器;

  S2:确定相应可燃气体的当地CJ爆震传播速度;

  S3:设定激波发生装置的角度使得前缘激波波后流动速度与当地CJ爆震传播速度的比值小于1.05。

  在上述方案中,以斜劈作为激波发生装置为例进行说明:斜劈仅作为斜爆震波的稳定装置(火焰稳定器),而不作为起爆装置;瞬时能量源位于斜劈表面附近。当超声速来流静压较低,或斜劈尺寸(高度)及角度较小时,根据经典的斜爆震起爆能量准则和化学动力学准则,此时斜劈无法起爆斜爆震波,而外加瞬时能量源的引入,可以直接在斜劈表面形成斜爆震波和局部正爆震波(局部正爆震波又称为横向爆震波)。由于横向爆震波以当地的CJ爆震速度传播,因此,欲使通过外加瞬时能量源形成的斜爆震波和局部正爆震波能够稳定在斜劈表面上,则必须要求横向爆震波的传播速度和斜劈前缘激波的波后流动速度能够匹配。当前缘激波波后流动速度显著大于当地CJ爆震速度时,横向爆震波和斜爆震波将会被气流吹向下游,最终导致爆震波熄灭。相反,如果前缘激波波后流动速度小于当地CJ爆震速度,则横向爆震波和斜爆震波将会向上游移动,使得整个波系结构变为脱体斜爆震结构。研究表明,前缘激波波后流动速度大于约1.05倍的当地CJ爆震速度时,横向爆震波及斜爆震波将会被吹向下游而无法稳定在斜劈上,导致利用外加瞬时能量源起爆斜爆震波的方法失效。

  当不采用该方法时,仅靠小尺寸、小角度的斜劈无法实现低来流静压下斜爆震波的起爆。当使用锥体作为激波发生装置时,也可通过调节锥体的锥角,使用上述类似方法。

  作为一种优选方案,S1中瞬时能量源采用热射流、高能点火器、电爆丝或强激光。

  在上述优选方案中,外加瞬时能量源可以是热射流、高能点火器、电爆丝、强激光等任何可以提供瞬时高温高压的装置。当瞬时能量源采用热射流时,热射流管应从燃烧室壁面伸入,射流管出口应位于斜劈表面或燃烧室侧壁上;当采用高能点火器时,高能点火头应位于斜劈表面或燃烧室侧壁上;当采用电爆丝时,电爆丝应位于斜劈表面附近位置;当采用强激光时,强激光的照射位置应在斜劈表面附近位置。

  作为一种优选方案,S2和S3中,包括以下步骤:

  T1:根据来流速度确定不同斜劈角度下的前缘激波波后流动速度;

  T2:根据来流组分、压力和温度确定不同斜劈角度的当地CJ爆震波速;

  T3:将前缘激波波后流动速度与当地CJ爆震传播速度进行匹配,得到满足速度比的斜劈角度。

  一种超声速气流中起爆斜爆震波的判定方法,通过测量前缘激波波后流动速度与当地CJ爆震传播速度比,并根据阈值进行判定。

  综上所述,本发明具有以下有益效果:

  本发明提供的利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法能够在较低的来流静压和小尺寸、小角度斜劈上起爆斜爆震波,有利于减小发动机和进气道阻力及进气道总压损失。

  附图说明

  图1是现有的斜爆震发动机原理示意图;

  图2是本发明实施例的外加瞬时能量源起爆斜爆震波过程的数值模拟结果的温度云图;

  图3是本发明实施例的外加瞬时能量源起爆斜爆震波失效过程的数值模拟结果的温度云图。

  具体实施方式

  以下结合附图对本发明作进一步详细说明。

  利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法,包括以下步骤:

  S1:在激波发生装置处加设瞬时能量源发生器;

  S2:确定相应可燃气体的当地CJ爆震传播速度;

  S3:设定激波发生装置的角度使得前缘激波波后流动速度与当地CJ爆震传播速度的比值小于1.05。

  在上述方案中,以斜劈作为激波发生装置为例进行说明:斜劈仅作为斜爆震波的稳定装置(火焰稳定器),而不作为起爆装置;瞬时能量源位于斜劈表面附近。当超声速来流静压较低,或斜劈尺寸(高度)及角度较小时,根据经典的斜爆震起爆能量准则和化学动力学准则,此时斜劈无法起爆斜爆震波,而外加瞬时能量源的引入,可以直接在斜劈表面形成斜爆震波和局部正爆震波(局部正爆震波又称为横向爆震波)。由于横向爆震波以当地的CJ爆震速度传播,因此,欲使通过外加瞬时能量源形成的斜爆震波和局部正爆震波能够稳定在斜劈表面上,则必须要求横向爆震波的传播速度和斜劈前缘激波的波后流动速度能够匹配。当前缘激波波后流动速度显著大于当地CJ爆震速度时,横向爆震波和斜爆震波将会被气流吹向下游,最终导致爆震波熄灭。相反,如果前缘激波波后流动速度小于当地CJ爆震速度,则横向爆震波和斜爆震波将会向上游移动,使得整个波系结构变为脱体斜爆震结构。研究表明,前缘激波波后流动速度大于约1.05倍的当地CJ爆震速度时,横向爆震波及斜爆震波将会被吹向下游而无法稳定在斜劈上,导致利用外加瞬时能量源起爆斜爆震波的方法失效。

  当不采用该方法时,仅靠小尺寸、小角度的斜劈无法实现低来流静压下斜爆震波的起爆。当使用锥体作为激波发生装置时,也可通过调节锥体的锥角,使用上述类似方法。

  作为一种优选方案,S1中瞬时能量源采用热射流、高能点火器、电爆丝或强激光。

  在上述优选方案中,外加瞬时能量源可以是热射流、高能点火器、电爆丝、强激光等任何可以提供瞬时高温高压的装置。当瞬时能量源采用热射流时,热射流管应从燃烧室壁面伸入,射流管出口应位于斜劈表面或燃烧室侧壁上;当采用高能点火器时,高能点火头应位于斜劈表面或燃烧室侧壁上;当采用电爆丝时,电爆丝应位于斜劈表面附近位置;当采用强激光时,强激光的照射位置应在斜劈表面附近位置。

  作为一种优选方案,S2和S3中,包括以下步骤:

  T1:根据来流速度确定不同斜劈角度下的前缘激波波后流动速度;

  T2:根据来流组分、压力和温度确定不同斜劈角度的当地CJ爆震波速;

  T3:将前缘激波波后流动速度与当地CJ爆震传播速度进行匹配,得到满足速度比的斜劈角度。

  一种超声速气流中起爆斜爆震波的判定方法,通过测量前缘激波波后流动速度与当地CJ爆震传播速度比,并根据阈值进行判定。

  图2所示的温度云图中,长度单位为毫米:(a)图中,t=0微秒,瞬时能量源引入斜劈产生的激波流场(激波未能实现点火);(b)图中,t=13.75微秒,瞬时能量源在斜劈表面附近形成横向爆震波和斜爆震波;(c)图中,t=25.86微秒,斜爆震波持续发展;(d)图中,t=1084.64微秒,斜爆震波稳定驻定。

  图3所示的温度云图中,长度单位为毫米:(a)图中,t=63.33微秒,瞬时能量源起爆后的斜爆震波;(b)图中,t=178.31微秒,瞬时能量源起爆后的横向爆震波和斜爆震波被吹向下游,横向爆震波到达斜劈尾缘附近;(c)图中,t=216.56微秒,斜爆震波继续向下游移动且横向爆震波消失;(d)图中,t=251.19微秒,瞬时能量源起爆的爆震结构被整体吹走,火焰熄灭。

  本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

《利用外加瞬时能量源在超声速气流中起爆斜爆震波的方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)