欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > 发动机机器> 用于排放处理系统的催化剂制品独创技术32318字

用于排放处理系统的催化剂制品

2021-02-07 19:15:30

用于排放处理系统的催化剂制品

  本发明涉及一种用于排放处理系统的改进的催化剂制品。具体地,本发明涉及设置在挤出的含钒SCR催化剂上的具有改善的钒中毒耐受性的氨漏失催化剂制剂。

  柴油机、固定式燃气轮机和其他系统中的烃燃烧产生废气,所述废气必须进行处理以去除氮氧化物(NOx),所述氮氧化物包括NO(一氧化氮)和NO2(二氧化氮),其中NO是形成的NOx中的大部分。已知NOx在人体内引起许多健康问题,以及引起许多有害的环境影响,包括烟雾和酸雨的形成。为了减轻废气中NOx对人类和环境的影响,希望消除这些不期望的组分,优选通过不产生其他有毒或毒性物质的方法。

  在贫燃汽油、液态石油气或天然气和柴油机中生成的废气通常是氧化的。在被称为选择性催化还原(SCR)的方法中,需要用催化剂和还原剂选择性地还原NOx,所述选择性催化还原将NOx转化为元素氮(N2)和水。在SCR方法中,在废气接触催化剂之前,将气体还原剂(通常为无水氨、氨水或尿素)添加到废气流中。还原剂被吸收到催化剂上并且NOx在气体穿过催化基底或在催化基底上通过时被还原。

  为了使NOx的转化率最大化,通常需要向气流中添加超过化学计量量的氨。然而,将过量的氨释放到大气中将对人的健康和环境有害。此外,氨是苛性的,尤其是其水性形式。氨和水在废气催化剂下游的排气管线区域中冷凝可导致可损害排气系统的腐蚀性混合物。因此,应当消除废气中氨的释放。在许多常规排气系统中,将氨氧化(AMOX)催化剂(也称为氨漏失催化剂或“ASC”)安装在SCR催化剂的下游以通过将氨转化成氮而从废气中移除氨。氨漏失催化剂的使用可允许在典型柴油驱动循环过程中大于90%的净NOx转化率。

  用于氧化废气中过量氨的催化剂是已知的。WO 2016/205506描述了氨漏失催化剂的示例。本公开包括选择性ASC涂层的示例,该选择性ASC涂层包含设置在挤出的含钒催化剂上的氧化铝上的Pt。该涂层据称具有良好的耐钒中毒性。氨漏失催化剂的另一个示例公开于申请人的WO 2016/205509中,其描述了包含在具有低氨存储的载体上的铂与SCR催化剂的共混物的催化剂。

  提交于2017年3月30日的申请人的英国专利申请号1705158.2公开了一种催化剂制品,该催化剂制品包括催化活性基底,该催化活性基底包括沿其轴向长度延伸的一个或多个通道,在使用中燃烧废气流动通过该一个或多个通道,该一个或多个通道具有用于接触燃烧废气流的第一表面;其中该基底由挤出的含钒SCR催化剂材料形成,其中第一层设置在该第一表面的至少一部分上,其中该第一层包含氨漏失催化剂组合物,该氨漏失催化剂组合物包含承载在二氧化钛、二氧化硅-二氧化钛混合氧化物、Ce-Zr混合氧化物或它们的混合物上的一种或多种铂族金属(PGM),并且第二层设置在该第一层的至少一部分上并包含SCR催化剂组合物。该涂层据称具有良好的耐钒中毒性。

  申请人的发明人现在已经发现,非常令人惊讶地,通过将铁化合物包含到与氧化催化剂层接触的催化活性基底的至少一个区域,可减少或避免直接设置在由挤出的含钒SCR催化剂材料形成的催化活性基底上的氧化催化剂层在使用中的钒中毒。铁化合物可通过例如用铁盐的水溶液浸渍该区域来添加;或通过将铁化合物添加到也包含含钒SCR催化剂材料的挤出糊剂中。此类铁化合物是除了存在于任何挤出的铁助催化的沸石SCR催化剂组分(例如离子交换沸石)中的任何阳离子铁之外的,所述沸石SCR催化剂组分存在于挤出的含钒SCR催化剂材料中,诸如申请人的WO 2014/027207 A1中所述的那些。

  此外,还发现,非常令人惊讶地,当将铁化合物添加到还含有含钒SCR催化剂材料的挤出糊剂中时,由挤出的含钒SCR催化剂材料形成的催化活性基底的物理强度得到改善。据信,当例如用铁盐的水溶液浸渍挤出的含钒SCR催化剂材料并煅烧所得浸渍基底时,也获得强度优点的这种改善。

  根据第一方面,提供了一种用于处理燃烧废气流的催化剂制品,所述制品包括:催化活性基底,所述催化活性基底包括沿其轴向长度延伸的一个或多个通道,在使用中燃烧废气流动通过所述一个或多个通道,所述一个或多个通道具有用于接触燃烧废气流的第一表面;其中所述基底由挤出的含钒SCR催化剂材料形成,其中第一层设置在所述第一表面的至少一部分上,其中所述第一层包含氨漏失催化剂组合物的洗涂层,所述氨漏失催化剂组合物包含承载在粒状金属氧化物载体材料上的一种或多种铂族金属,并且其中包含SCR催化剂组合物的洗涂层的层设置在所述一个或多个通道中的表面上,其中所述第一表面的上面设置有所述第一层的至少所述部分包含铜、铁、铈或锆的化合物或它们中的任何两种或更多种的混合物。

  现在将进一步描述本公开。在以下段落中,更详细地定义了本公开的不同方面/实施方案。除非有明确相反的说明,否则如此定义的每个方面/实施方案可与任何其他方面/实施方案或多个方面/实施方案组合。具体地,任何被指示为优选或有利的特征可与任何其他被指示为优选或有利的一个或多个特征组合。预期相对于产品所公开的特征可与相对于方法所公开的那些特征组合,反之亦然。

  此外,如本文所用,术语“包含”可换成“基本上由…组成”或“由…组成”的定义。术语“包含”旨在表示所述元件是必要的,但可添加其他元件并且仍形成权利要求范围内的构造。术语“基本上由…组成”将权利要求的范围限制于指定的材料或步骤以及那些不会实质上影响受权利要求书保护的本发明的基本特征和新型特征的材料或步骤。术语“由…组成”将权利要求限定为不包括除所列举的那些材料以外的材料,通常与之相关的杂质除外。

  在使用中,在含氮还原剂存在下的挤出的含钒SCR催化剂材料用于还原废气中的NOx。任何过量的含氮还原剂接触第一层中的ASC并转化为氮。包含(另外的)SCR催化剂组合物的洗涂层的层的存在解决了由氨的过度氧化而产生的NOx问题,该NOx的排放可降低整个系统的NOx净转化率。由于这种构造,NOx转化率水平高。

  然而,发明人已经发现,钒可从基底迁移到ASC涂层的PGM层中。这导致失活,尤其是在对应于车辆寿命终止模拟的580℃/100小时的发动机老化之后,并且在PGM载体为基于沸石的情况下观察到。令人惊讶地,现已发现,在用硝酸铁水溶液浸渍挤出的含钒SCR催化剂材料的情况下,对于涂覆在挤出的含钒催化剂基底上的氨漏失催化剂(ASC),允许ASC的功能变得更加稳定并且提供改善的耐毒性,特别是对于钒的耐毒性。这已被证明,特别是与没有首先用硝酸铁水溶液浸渍的挤出的含钒SCR催化剂材料相比。

  此外,发明人在研究期间发现,从含有含钒SCR催化剂材料的挤出蜂窝结构切割然后煅烧的用硝酸铁、硝酸铈、硝酸锆或硝酸铜涂覆的芯在标准体积的蒸馏水中比未涂覆的芯浸出更少的钒,其中所述芯在所述标准体积的蒸馏水中浸入一段测试时间。使用电感耦合等离子体(ICP)测试洗脱液以确定其中存在的钒的量。这表明,除了铁-铈化合物之外,锆化合物和铜化合物、或铁化合物、铈化合物、锆化合物和铜化合物中的任何两种或更多种的混合物也可用于降低或避免第一层中PGM氧化活性的钒中毒。已知铈化合物和铁化合物的组合可提供协同SCR活性,因此铈化合物和铁化合物的特定组合是优选的。

  此外,铁化合物和铜化合物相对于PGM具有相对低的氧化活性。然而,使用铁和/或铜可有助于第一层中的氧化功能,使得可能需要较少的PGM来获得期望的氧化活性。

  优选地,该化合物包含铁的化合物或由铁的化合物组成。

  不受理论的束缚,认为钒和铁以及PGM与载体材料中的不同位点缔合,使得钒不干扰PGM的催化特性。

  发明人还考虑铁、铜、铈或锆的化合物(其可在空气中煅烧后作为氧化物化合物存在,但在使用中也可作为硝酸盐或碳酸盐存在)也可被限定为游离铁、游离铜、游离铈或游离锆。具体地,在本上下文中,术语“游离”旨在区分存在于基底中并且与含钒SCR催化剂材料共挤出的铁或铜离子交换沸石(参见例如WO 2014/027207 A1),其中离子交换的铜作为阳离子存在,或者以相对低量的游离化合物存在,作为铁或铜的离子交换中的假象,即在离子交换后保留在沸石中的任何铁或铜在煅烧期间被氧化。就这一点而言,存在于根据本发明的催化剂制品中的“游离”铁和/或铜化合物以显著高于离子交换后残留在沸石中的最小量的量存在。具体地,铁化合物、铈化合物、铜化合物或锆化合物中的总的一种或多种可以>200gft-3(诸如>500gft-3、或>750gft-3、或>1000gft-3)的量存在。

  本发明涉及催化剂制品。所谓催化剂制品是指如本文所述的具有催化特性的结构。催化特性来源于包含在结构中或涂覆在其上的材料。如本文所定义的制品包括如本文所述的经涂覆的催化基底以及适于安装在汽车上的经处理和罐装的SCR和/或ASC单元两者。催化剂制品提供了当用于SCR工艺或SCR工艺下游时在减少氨漏失方面有效的非均相氧化催化剂。

  催化剂制品用于处理燃烧废气流。即,催化剂制品可用于处理来源于燃烧过程的废气,诸如来自内燃机(无论是移动式还是固定式)、用于固定式、船舶或机车应用的燃气轮机、以及燃煤或燃油发电厂的废气。本发明的催化剂制品的优选应用是在机动车辆排气系统中。该制品也可用于处理来自工业过程如精炼、来自精炼厂加热器和锅炉、加热炉、化学加工工业、焦炉、城市废物厂和焚烧炉等的气体。在特别优选的实施方案中,该方法用于处理来自燃气轮机或贫燃汽油、柴油、液态石油气或天然气发动机的废气。

  包含设置在一个或多个通道中的表面上的SCR催化剂组合物的洗涂层的层可包含设置在第一表面的至少一部分上的第一层,即其中第一层为SCR催化剂组合物和氨漏失催化剂组合物的混合物。另选地,该层是设置在第一层的至少一部分上的第二层。

  催化剂制品包括催化活性基底,该催化活性基底包括沿其轴向长度延伸的一个或多个通道,在使用中燃烧废气流动通过该一个或多个通道。此类构造在本领域中有时被称为“蜂窝结构”形式。在使用中,一个或多个通道具有用于接触燃烧废气流的第一表面。催化活性基底提供SCR功能,使得燃烧气体中的NOx被转化为氮和水。

  基底由挤出的含钒SCR催化剂材料形成。此类挤出的含钒基底的示例在WO 2011/092521、WO 2009/093071和WO 2013/017873中提供,这些专利的内容以引用方式包括在本文中。此类含钒基底的使用提供了有效的SCR特性,但也提供了钒中毒的风险。优选地,基底包含1重量%至3重量%、优选1.5重量%至2.5重量%的氧化钒。此类含量适于良好的SCR特性。

  挤出的SCR催化剂材料优选还包含过渡金属助催化的分子筛。例如,优选的基底由钒/钨/二氧化钛和铁助催化的ZSM-5沸石的共混物形成,如WO 2014/027207 A1中所公开的,该专利的全部内容以引用方式并入本文。其他合适的过渡金属和分子筛在本文讨论的领域中是公知的。

  优选地,基底为蜂窝结构流通式整料基底。蜂窝结构构造比板型更紧凑,但具有更高的压降并且更容易堵塞(变得阻塞)。对于大多数移动应用而言,优选的基底包括具有所谓的蜂窝结构几何形状的流通式整料,其包括多个相邻的平行通道,所述通道在两端是开放的并且通常从基底的入口面延伸至出口面,并且导致高的表面积-体积比。对于一些应用而言,蜂窝结构流通式整料优选具有高孔密度(例如约600孔/平方英寸至800孔/平方英寸)和/或约0.18至0.35mm、优选约0.20mm至0.25mm的平均内壁厚度。对于某些其他应用而言,蜂窝结构流通式整料优选具有约150孔/平方英寸至600孔/平方英寸、更优选约200孔/平方英寸至400孔/平方英寸的低孔密度。优选地,蜂窝结构整料为多孔的。另选地,基底可为所谓的壁流式过滤器的通道。

  第一层设置在基底通道的内壁的至少一部分即“第一表面”上。根据一个实施方案,第一层覆盖基底的轴向长度的多达50%,优选轴向长度的10%至40%,并且优选从制品的端部延伸。在该实施方案中,剩余的未覆盖基底充当SCR催化剂以在含氮还原剂的存在下处理NOx。然后,由第一层提供的涂覆部分充当ASC。优选地,该涂覆部分在使用中从基底的下游端延伸,使得在任何残余的氨(等)在离开基底之前ASC作用于其上。

  根据另选的实施方案,第一层覆盖基底的轴向长度的至少50%,优选轴向长度的100%。在该实施方案中,装置的功能可完全作为ASC,其中由第一层提供ASC特性,并且其可位于排放处理系统中的单独SCR催化剂的下游。

  第一层包含氨漏失催化剂组合物。氨漏失催化剂组合物包含承载在粒状金属氧化物载体材料上的一种或多种铂族金属(PGM),该粒状金属氧化物载体材料选自由以下项组成的组:氧化铝、二氧化硅-二氧化钛混合氧化物、Ce-Zr混合氧化物、二氧化铈、二氧化钛、二氧化硅、氧化锆和沸石或它们中的任何两种或更多种的混合物。PGM选自钌、铑、钯、锇、铱、铂以及它们中的两种或更多种的混合物。优选地,PGM为铂、钯或两者的组合,并且最优选由铂组成。优选地,第一层包含0.05重量%至0.5重量%、更优选0.1重量%至0.2重量%的铂族金属。此类PGM负载提供期望的ASC特性。低于下限,ASC涂层的耐久性由于PGM在加热时的烧结而降低。高于上限,催化剂的选择性降低。

  在粒状金属氧化物载体材料为沸石的情况下,优选其为具有至少100(诸如至少200、至少250、至少300、至少400、至少500、至少750或至少1000中的至少一者)的二氧化硅与氧化铝之比的硅质沸石,如申请人的WO 2016/205506 A1或WO 2016/205509 A1中的一者或两者中所述。

  当存在于第一层中时,二氧化钛优选为锐钛矿,因为其具有较高的表面积。当存在时,二氧化硅-二氧化钛混合氧化物的特征可在于二氧化硅与二氧化钛的平衡。优选地,二氧化硅-二氧化钛混合氧化物含有小于50重量%的二氧化硅,优选5重量%至25重量%并且更优选7重量%至15重量%的二氧化硅。当存在时,Ce-Zr混合氧化物的特征可在于二氧化铈与氧化锆的平衡。优选地,基于总氧化物计,Ce-Zr混合氧化物具有60:40至30:70的二氧化铈与氧化锆之比,即CeO2:ZrO2。

  除了所列载体上的PGM以外,第一层可包含附加组分。例如,诸如填料、粘结剂、稳定剂、流变改性剂和其他添加剂的组分。在某些实施方案中,洗涂层包含成孔剂,诸如石墨、纤维素、淀粉、聚丙烯酸酯和聚乙烯等。这些附加组分不一定催化所需的反应,而是例如通过增加其操作温度范围、增加催化剂的接触表面积、增加催化剂对基底的粘附性等来改善催化材料的有效性。通常,唯一的附加组分将为粘结剂。通常,用作粘结剂的金属氧化物颗粒可与用作载体的金属氧化物颗粒基于粒度来区分开,其中粘结剂颗粒相对于载体颗粒显著更大。优选地,附加组分形成第一层的小于25重量%、优选小于15重量%并且最优选小于10重量%,余量为PGM和二氧化钛、二氧化硅-二氧化钛混合氧化物、Ce-Zr混合氧化物、或它们的混合物。

  优选地,在初始煅烧以固定层之后在新鲜时第一层包含小于约5重量%并且更优选小于约1重量%的钒。

  如上所述,第二层可设置在第一层上方,该第二层包含SCR催化剂组合物。第二层含有用于存储NH3并在氧气存在下用NH3选择性还原NOx的催化剂,本文也称为SCR催化剂。优选地,第二层覆盖通道内的整个第一层。实际上,最优选地,第二层包围第一层,使得第一层不能直接接触废气流。这种构造提供了对N2的改善的选择性,并具有最小化的N2O和NO和/或NO2生成。SCR顶层的不完全覆盖或消除总共可以选择性为代价增加NH3转化率(相对于ASC,生成更多的N2O和NO和/或NO2)。具有很少或不具有可用NH3储存的顶层可导致较差的选择性以及更多的N2O和NO和/或NO2生成。

  优选地,包含设置在一个或多个通道中的表面上的SCR催化剂组合物的洗涂层的SCR催化剂组合物层包含铜助催化的沸石、铁助催化的沸石或它们的组合。第一SCR催化剂优选为Cu-SCR催化剂、Fe-SCR催化剂或混合氧化物,更优选为Cu-SCR催化剂或Fe-SCR催化剂,最优选为Cu-SCR催化剂。Cu-SCR催化剂包含铜和沸石。Fe-SCR催化剂包含铁和沸石。

  沸石为具有国际沸石协会(LZA)公布的沸石结构数据库中所列的骨架结构中的任一种的微孔硅铝酸盐。骨架结构包括但不限于CHA、FAU、BEA、MFI、MOR类型的那些。具有这些结构的沸石的非限制性示例包括菱沸石、八面沸石、沸石Y、超稳定沸石Y、β沸石、丝光沸石、硅石岩、沸石X和ZSM-5。沸石可根据孔径分类,例如沸石骨架中存在的四面体原子的最大数目。如本文所定义,小孔沸石诸如CHA含有八个四面体原子的最大环尺寸,而中孔沸石例如MFI含有十个四面体原子的最大环尺寸,并且大孔沸石诸如BEA含有十二个四面体原子的最大环尺寸。介孔沸石也是已知的,但它们具有大于十二个四面体原子的最大环尺寸。用于本发明的层中的SCR催化剂组合物的最优选沸石骨架为小孔沸石,特别是具有骨架类型AEI、AFX、CHA、DDR、ERI、ITE、LEV、LTA、STI或SFW的那些,或CHA或AEI为特别优选的。

  硅铝酸盐沸石可具有至少约5、优选地至少约20的二氧化硅/氧化铝摩尔比(SAR)(定义为SiO2/Al2O3),其中可用范围为约10至200。最优选地,硅铝酸盐SAR范围为10至30,这提供了活性(即由氧化铝提供的离子交换至阴离子位点的能力)与由二氧化硅含量提供的热耐久性之间的平衡。

  优选地,当在200℃下测量时,第二层具有多达0.1g/g第二层、优选0.01g/g至0.05g/g并且最优选约0.025g/g的至少一些氨存储容量。

  如本文所用,术语“第一层”和“第二层”用于描述催化剂制品中催化剂层相对于废气流动通过催化剂制品和/或在催化剂制品上方流动的法向的相对位置。在正常废气流动条件下,废气在接触第一层之前接触第二层,然后将在离开催化剂制品之前再次接触第二层。应当注意,第一层和第二层由于其结构而为多孔的,并且允许废气在层材料内通过并穿过层材料。将第一层作为底层施加到流通式蜂窝结构基底,并且第二层为施加在第一层上方的顶层。

  用于施加第一层和第二层以及用于铜、铁、铈或锆化合物的浸渍介质的技术是本领域公知的,并且包括将洗涂层施加到待涂覆的表面,参见例如申请人的WO 99/047260A1。在将层涂覆到制品上之后,通常将它们干燥,然后煅烧以固定层。煅烧是本领域公知的,并且可在约500℃的温度下在空气中进行。

  优选地,本文所述的催化剂制品是罐装的并且准备用于汽车废气处理系统。

  根据另一方面,提供了用于处理燃烧废气流的排放处理系统,所述系统包括与本文所述的催化剂制品流体连通的燃烧废气源,以及布置在所述制品上游的含氮还原剂源。优选地,该燃烧废气源为柴油机。

  即,本发明的催化剂制品可以是排放气体处理系统的一部分,其中该催化剂制品设置在含氮还原剂源的下游。根据一个实施方案,制品为包含下游ASC催化剂部分的SCR催化剂。例如,氨漏失催化剂设置在流通式基底的下游端,并且SCR催化剂设置在流通式基底的上游端。根据另一个实施方案,制品为待设置在单独的选择性催化还原(SCR)催化剂下游的ASC催化剂。即,氨漏失催化剂和SCR催化剂设置在排气系统内的单独块上。这些单独的块可彼此相邻并接触,或者分开特定的距离,前提条件是它们彼此流体连通并且前提条件是SCR催化剂块设置在氨漏失催化剂块的上游。在这两个实施方案中,氨漏失催化剂氧化未被选择性催化还原过程消耗的任何含氮还原剂的至少一部分。

  含氮还原剂可为氨本身、肼、或氨前体,所述氨前体选自由以下项组成的组:尿素((NH2)2CO)、碳酸铵、氨基甲酸铵、碳酸氢铵和甲酸铵。氨是最优选的。

  优选地,第一层覆盖基底的轴向长度的多达50%,并且在使用中被设置成从制品的下游端延伸。

  根据另一方面,提供了一种用于处理燃烧废气流的方法,所述方法包括在含氮还原剂的存在下使燃烧废气流与本文所述的催化剂制品接触。

  根据另一方面,提供了一种制备根据本发明的催化剂制品的催化剂制品的方法,所述方法包括:用铜、铁、铈、镁或锆或它们中的任何两种或更多种的混合物的盐水溶液浸渍由挤出的含钒SCR催化剂材料形成的催化活性基底的一个或多个通道的第一表面,在所述第一表面上待设置包含氨漏失催化剂组合物的洗涂层的第一层,所述氨漏失催化剂组合物包含承载在粒状金属氧化物载体材料上的一种或多种铂族金属;干燥所述浸渍基底;以及在所述第一表面上施加氨漏失催化剂组合物的洗涂层,所述氨漏失催化剂组合物包含承载在粒状金属氧化物载体材料上的一种或多种铂族金属。

  根据另一方面,提供了一种制备根据本发明的催化剂制品的催化剂制品的方法,所述方法包括:形成可挤出糊剂,所述可挤出糊剂包含含钒SCR催化剂材料、永久性粘结剂和铜、铁、铈、镁或锆的化合物或它们中的任何两种或更多种的混合物;将所述糊剂挤出成蜂窝结构形式,所述蜂窝结构形式包括沿其轴向长度延伸的一个或多个通道,在使用中燃烧废气流动通过所述一个或多个通道,所述一个或多个通道具有用于接触燃烧废气流的第一表面;干燥并煅烧所述挤出的蜂窝结构形式糊剂;以及在所述第一表面上施加氨漏失催化剂组合物的洗涂层,所述氨漏失催化剂组合物包含承载在粒状金属氧化物载体材料上的一种或多种铂族金属。

  虽然本公开描述了第一层和第二层,但还设想第一层和第二层可作为包含本文针对第一层和第二层所述的所有那些组分的单个混合层提供。

  现在将结合以下非限制性附图描述本公开,其中:

  图1示出三个测试样品布置结构的示意性横截面,每个测试样品布置结构涂覆有单层ASC,该单层ASC包含与Cu/AEI SCR催化剂组合物混合的承载在沸石上的Pt。第一布置结构为堇青石基底(比较例)。第二布置结构为由含有WO 2014/027207A1中所述的V2O5/WO3/TiO2的挤出混合物和Fe-ZSM5(MFI)沸石的混合物形成的挤出流通式催化活性蜂窝结构基底。所示的第三布置结构与第二布置结构相同,不同之处在于在施加PtZ/CuAEI涂层之前基底的区域已用硝酸铁浸渍,然后干燥并煅烧;

  图2示出了比较新鲜和老化的挤出催化剂(参考例和根据本发明)的1英寸×1英寸芯的NH3氧化活性的图。;

  图3示出了比较新鲜和老化的挤出催化剂(根据本发明和堇青石比较例)的1英寸×1英寸芯的NH3氧化活性的图;

  图4示出了比较挤出催化剂的整个6英寸芯的NOx转化活性(即SCR反应)的图;并且

  图5示出了比较挤出催化剂的整个6英寸芯的催化剂作为整体氧化一氧化碳(CO)的活性的图。

  参考图1,在使用中,废气在氨的存在下接触基底中的SCR材料,并从左手侧进入基底的通道流向右手侧。这将废气中的NOx转化为氮和水。

  然后,废气中过量的氨接触第一层中的ASC并转化为氮。这种转化还可产生附加的NOx,其然后接触第一层中的SCR并转化回氮。

  在一个优选的实施方案中,流通式基底为钒/钨/二氧化钛和铁助催化的ZSM-5沸石的挤出共混物。该基底设置有作为洗涂层施加的第一层,该第一层含有约0.15重量%的Pt、铁助催化的沸石和小于10重量%的硅溶胶粘结剂。粘结剂有助于使层粘附到基底,但优选地以避免背压增加的最小量存在。在施加后可将第一层干燥,然后在约500℃下在空气中煅烧以将其固定。

  然后将完成的制品罐装以安装在排气系统中。

  现在将结合以下非限制性实施例描述本公开。

  实施例

  实施例1:挤出的蜂窝结构基底的制备

  根据WO 2014/027207 A1的挤出蜂窝结构基底催化剂通过以下方式制备:首先将已用>1重量%的铁离子交换的MFI硅铝酸盐沸石与2重量%的V2O5-WO3/TiO2平衡组分和无机助剂混合,以改善挤出的流变性并增加挤出物的机械强度。可添加合适的有机助剂诸如挤出润滑剂和增塑剂以有利于混合,从而形成均匀的可挤出物料。有机助剂可包括纤维素、水溶性树脂诸如聚乙二醇,并且在煅烧期间从最终基底中烧尽。选择沸石、V2O5-WO3/TiO2、无机助剂的适当比例,使得在除去有机助剂后基底包含16重量%的Fe/沸石组分、72重量%的V2O5-WO3/TiO2组分、12重量%的无机助剂。将可挤出物料挤出以形成10.5英寸直径×6.0英寸长和400孔/平方英寸的流通式构造的蜂窝结构体(即,孔在两端开放),所述蜂窝结构体的蜂窝孔壁厚为千分之11英寸(mil)。然后将挤出的蜂窝结构基底干燥并煅烧以形成成品。

  实施例2:离子交换的铜AEI沸石SCR催化剂洗涂层的制备

  将可商购获得的合成硅铝酸盐沸石CHA在NH4NO3溶液中进行NH4+离子交换,然后过滤。在搅拌下将所得材料添加到Cu(NO3)2的水溶液中。将浆液过滤,然后洗涤并干燥。可重复该程序以实现3重量%的金属负载。煅烧最终产物。

  实施例3:Pt沸石氨漏失催化剂洗涂层组分的制备

  将硝酸铂溶液浸渍到可商购获得的沸石上以形成浆液,其中沸石的目标Pt含量为0.2重量%并且Pt标称负载为3g/ft3。

  实施例4:Pt沸石/CuAEI氨漏失催化剂洗涂层的制备

  在水中,用氧化铝溶胶粘结剂制备包含实施例2的CuAEI SCR催化剂和实施例3的Pt沸石ASC洗涂层组分的50:50重量共混物的洗涂层浆液。

  实施例5:用第一层催化剂组合物涂覆基底

  使用WO 99/47260 A1中所述的方法,用实施例4(比较例)的洗涂层从蜂窝结构基底的一端将根据实施例1制备的一种蜂窝结构基底涂覆至1英寸的深度,即该方法包括以下步骤:(a)将容纳装置定位在基底的顶部上,(b)将预定量的液体组分以(a)然后(b)或(b)然后(a)的顺序定量添加到所述容纳装置中,以及(c)通过施加真空,将全部所述量的液体组分抽吸到基底的至少一部分中,并且将基本上全部所述量保留在载体内,而不进行再循环。然后将经涂覆的基底干燥并煅烧。

  单独地,用硝酸铁溶液将根据实施例1制备的蜂窝结构基底从一端浸渍至蜂窝结构基底的约1.5英寸的深度,达到1000gft-3的目标负载。然后将该部分干燥并在空气中煅烧。然后以与上文该实施例5中所述相同的方式,从已施加硝酸铁浸渍的端部开始,用实施例4的氨漏失催化剂洗涂层涂覆所得的硝酸铁浸渍部分。将如此涂覆的部分再次干燥并煅烧,得到根据本发明的涂覆产品。

  通过使用堇青石蜂窝结构基底以类似的方式制备比较产品(比较例)。

  实施例6:老化条件

  根据欧洲排放标准法规,将由实施例5得到的挤出催化剂蜂窝结构基底的样品在加速老化步骤中通过将其在烘箱中以10,000kg气体/小时的流速在高于580℃下加热2小时(本文称为“新鲜”)或在580℃下加热50小时(本文称为“老化”)而热老化(不存在水),以模拟蜂窝结构基底在车辆寿命终止期间对机动车辆废气的预期暴露。

  实施例7:测试条件

  从得自实施例6的新鲜和老化的基底上切割1英寸直径的芯,并且将每个芯装载到合成催化活性测试(SCAT)实验室设备中以测试每个样品在模拟废气中氧化NH3的能力,所述模拟废气含有500ppm NH3、4.5重量%CO、5重量%H2O、200ppm CO2、12重量%O2,并且余量为N2。该测试在150,000hr-1的废气空速下进行。NH3转化率%对温度的结果示于图2中。然后将每个芯的经涂覆的氨漏失催化剂区段从芯的其余部分切下以提供1英寸×1英寸的芯。在SCAT设备中测试1英寸×1英寸芯的氨转化率。

  如图2所示,与等同布置结构但未硝酸铁浸渍(图中的“参考例”)相比,用硝酸铁预处理的挤出催化剂具有改善的新鲜和老化的NH3氧化性能。图3显示,根据本发明的催化剂的氨氧化活性在新鲜时比堇青石比较例好,而在老化时几乎相同。这表明根据本发明的老化样品的氨氧化活性较少受到源自挤出基底的钒中毒的影响。

  图4显示,老化的参考例的SCR层似乎已受到钒中毒或可能的钨中毒或两者的影响。类似地,老化的参考例的全部6英寸芯的CO氧化活性比根据本发明的芯的CO氧化活性差,表明Pt沸石的活性已受到来自基底中的挤出SCR催化剂的钒和/或钨的影响。

  以上详细描述已通过解释和说明的方式提供,并且不旨在限制所附权利要求的范围。本文所示的目前优选的实施方案的许多变型形式对于本领域普通技术人员而言将是显而易见的,并且保持在所附权利要求及其等同物的范围内。

  为避免疑问,本文公认的所有文献的全部内容均以引用方式并入本文。

《用于排放处理系统的催化剂制品.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)