欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 组合技术> 用于高通量研究的单个细胞核酸独创技术79635字

用于高通量研究的单个细胞核酸

2021-02-19 23:28:23

用于高通量研究的单个细胞核酸

  相关申请的交叉引用

  本申请要求2015年2月27日提交的美国临时申请第62/126,349号的权益,该申请在此通过引用以其整体并入。

  关于根据联邦政府资助的研究与开发进行的发明的权利的声明

  不适用。

  领域

  本文公开的主题一般涉及单个细胞或小的细胞的组(small groups of cells)的分析的领域。特别地,主题涉及用于用将至少两种试剂独立地添加至多个细胞或细胞的组(或其组分)中进行分开的反应,任选地随后进一步分析的方法和组合物。

  背景

  在生命科学中对在一项研究中定量大量单个细胞的转录存在兴趣。目前,Fluidigm Corporation能够通过C1TM系统“集成的流体回路(fluidic circuit)”(IFCTM)微流体装置一次研究来自96个单个细胞的转录。

  用于由单个细胞制备cDNA用于分析mRNA转录水平、但通常不限于mRNA测序的来自商业来源的目前可用化学不能用于Fluidigm IFCTM中,除非对于每一个单个细胞存在可寻址的出口孔。当来自每一个细胞的cDNA以汇集物(pool)组合在一起时,不存在使用商业试剂盒鉴定来自单个细胞的转录物的容易方式;由于不存在足够的孔输出每一个离散的单个细胞cDNA样品,所以在第2代载体上为多于96个单个细胞开发的Fluidigm IFCsTM是必要的。

  如果要对cDNA进行测序,例如,使用由Illumina,Inc.(San Diego,CA)商业化的桥式扩增(簇产生)和测序方法对cDNA进行测序,另外的问题为需要对来自96-细胞IFCTM的每一个细胞的cDNA进行单独的商业标签化反应,以允许在测序期间对流动池成簇和样品鉴定的受控的片段化。

  概述

  本公开内容包括开发在IFC中的高通量(HT)捕获体系结构以及伴随化学(companion chemistry),其促进来自每一个细胞的方便的单个细胞转录物组扩增和特定转录物的鉴定并且还具有多种其他应用。

  在多个方面,本文考虑的公开内容可以包括,但不必限于以下实施方案中的任何一种或更多种:

  实施方案1:一种将来自群体的细胞暴露于至少两种不同试剂的方法,其中每一个细胞被单独地、或以两个或更多个的组(in groups of two of more)暴露于所述试剂,所述方法包括:

  (a)将来自所述群体的细胞分配至微流体装置中的多个捕获位点,使得多个捕获位点各自包含一个或更多个细胞;

  (b)将一种或更多种第一试剂提供至每一个捕获位点;

  (c)将一种或更多种第二试剂提供至每一个捕获位点,其中所述第二试剂与所述第一试剂不同,并且与所述第一试剂分开地提供;

  (d)执行反应,由此反应产物编码一项捕获位点信息;

  (e)回收所述反应产物;以及

  (f)分析所述反应产物,其中此类分析允许将特定反应产物鉴定为来源于在特定捕获位点的单个细胞或细胞的组。

  实施方案2:一种将核酸序列掺入到来自细胞群体的反应产物中的方法,其中将所述核酸序列掺入到单独地每一个细胞或多达1000个细胞的组的反应产物中,所述方法包括:

  (a)将来自所述群体的细胞分配至微流体装置中的多个捕获位点,使得多个捕获位点各自包含一个或更多个细胞;

  (b)将一种或更多种第一试剂提供至每一个捕获位点;

  (c)将一种或更多种第二试剂提供至每一个捕获位点,其中所述第二试剂与所述第一试剂不同,并且与所述第一试剂分开地提供;

  (d)执行反应,在所述反应中将核酸序列单独地掺入到每一个细胞或细胞的组的反应产物中;

  (e)回收所述反应产物;以及

  (f)分析所述反应产物,其中此类分析允许将特定反应产物鉴定为来源于在特定捕获位点的单个细胞或细胞的组。

  实施方案3:一种将核酸序列掺入到细胞群体的核酸中的方法,其中将所述核酸序列掺入到单独地每一个细胞或多达1000个细胞的组的核酸中,所述方法包括:

  (a)将来自所述群体的细胞分配至微流体装置中的多个捕获位点,使得多个捕获位点各自包含一个或更多个细胞;

  (b)将一种或更多种第一试剂提供至每一个捕获位点;

  (c)将一种或更多种第二试剂提供至每一个捕获位点,其中所述第二试剂与所述第一试剂不同,并且与所述第一试剂分开地提供;

  (d)执行反应,在所述反应中将核酸序列单独地掺入到每一个细胞或细胞的组的核酸中,以产生反应产物;

  (e)回收所述反应产物;以及

  (f)分析所述反应产物,其中此类分析允许将特定反应产物鉴定为来源于在特定捕获位点的单个细胞或细胞的组。

  实施方案4:如任一项前述实施方案所述的方法,其中进行所述分配,使得多个捕获位点各自包含不多于一个单个细胞。

  实施方案5:如任一项前述实施方案所述的方法,其中所述反应将核苷酸条形码掺入到所述反应产物中。

  实施方案6:如实施方案5所述的方法,其中所述条形码编码一项捕获位点信息。

  实施方案7:如任一项前述实施方案所述的方法,其中所述反应将独特地鉴定核酸序列被掺入到其中的分子的所述核酸序列(UMI)掺入到所述分子中。

  实施方案8:如实施方案3所述的方法,其中所述反应包括RNA的逆转录。

  实施方案9:如实施方案8所述的方法,其中所述第一试剂包含逆转录(RT)引物,所述逆转录(RT)引物包含聚-dT序列和所述聚-dT序列5’的第一条形码。

  实施方案10:如实施方案9所述的方法,其中所述RT引物另外包含第一UMI。

  实施方案11:如实施方案10所述的方法,其中所述第一UMI在所述聚-dT序列的5’。

  实施方案12:如实施方案9-11所述的方法,其中所述RT引物另外包含第一接头。

  实施方案13:如实施方案12所述的方法,其中所述第一接头在所述RT引物的5’末端。

  实施方案14:如实施方案9-13所述的方法,其中所述RT引物另外包含所述聚-dT序列3’的锚序列。

  实施方案15:如实施方案8-14所述的方法,其中所述反应另外包括第二链合成以产生cDNA。

  实施方案16:如实施方案8-15所述的方法,其中所述第二试剂包含5’寡核苷酸,所述5’寡核苷酸包含聚-riboG序列。

  实施方案17:如实施方案15所述的方法,其中所述5’寡核苷酸包含所述聚-riboG序列5’的第二条形码。

  实施方案18:如实施方案15或17所述的方法,其中所述5’寡核苷酸另外包含第二UMI。

  实施方案19:如实施方案18所述的方法,其中所述第二UMI在所述聚-riboG序列的5’。

  实施方案20:如实施方案15-19所述的方法,其中所述5’寡核苷酸另外包含第二接头。

  实施方案21:如实施方案20所述的方法,其中所述第二接头在所述5’寡核苷酸的5’末端。

  实施方案22:如实施方案21所述的方法,其中所述方法包括产生cDNA,所述cDNA中一条链具有以下结构:5’-第二接头-来源于RNA的核苷酸序列-第一接头-3’,且条形码位于所述接头之间。

  实施方案23:如实施方案22所述的方法,其中所述第一条形码与所述第一接头相邻定位。

  实施方案24:如实施方案23所述的方法,其中所述第二条形码与所述第二接头相邻定位。

  实施方案25:如实施方案23所述的方法,其中cDNA的所述一条链具有以下结构:3’-第二接头-聚dC-来源于RNA的核苷酸序列-第一条形码-第一接头-5’。

  实施方案26:如实施方案25所述的方法,其中cDNA的所述一条链具有以下结构:3’-第二接头-第二条形码-聚dC-来源于RNA的核苷酸序列-第一条形码-第一接头-5’。

  实施方案27:如实施方案25所述的方法,其中cDNA的所述一条链具有选自由以下组成的组的结构:3’-第二接头-聚dC-来源于RNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;以及3’-第二接头-聚dC-来源于RNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’。

  实施方案28:如实施方案27所述的方法,其中cDNA的所述一条链具有选自由以下组成的组的结构:3’-第二接头-第二条形码-第二UMI-聚dC-来源于RNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;3’-第二接头-第二条形码-第二UMI-聚dC-来源于RNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’;3’-第二接头-第二UMI-第二条形码-聚dC-来源于RNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;以及3’-第二接头-第二UMI-第二条形码-聚dC-来源于RNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’。

  实施方案29:如实施方案3所述的方法,其中所述反应包括DNA的扩增。

  实施方案30:如实施方案29所述的方法,其中所述第一和/或第二试剂分别包含第一和/或第二扩增引物,其中所述第一和/或第二扩增引物分别包含在引物序列的5’的第一或第二条形码。

  实施方案31:如实施方案30所述的方法,其中所述第一和/或第二扩增引物分别另外包含第一或第二UMI。

  实施方案32:如实施方案31所述的方法,其中所述第一或第二UMI在所述引物序列的5’。

  实施方案33:如实施方案30-32所述的方法,其中所述第一和/或第二扩增引物另外包含第一或第二接头。

  实施方案34:如实施方案33所述的方法,其中所述第一或第二接头在所述扩增引物的5’末端。

  实施方案35:如实施方案34所述的方法,其中所述方法包括产生扩增子,所述扩增子中中一条链具有以下结构:5’-第二接头-来源于细胞DNA的核苷酸序列-第一接头-3’,且条形码位于所述接头之间。

  实施方案36:如实施方案35所述的方法,其中一条链具有以下结构:3’-第二接头-来源于细胞DNA的核苷酸序列-第一条形码-第一接头-5’。

  实施方案37:如实施方案25所述的方法,其中所述一条链具有以下结构:3’-第二接头-第二条形码-来源于细胞DNA的核苷酸序列-第一条形码-第一接头-5’。

  实施方案38:如实施方案25所述的方法,其中所述一条链具有选自由以下组成的组的结构:3’-第二接头-来源于细胞DNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;以及3’-第二接头-来源于细胞DNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’。

  实施方案39:如实施方案27所述的方法,其中所述一条链具有选自由以下组成的组的结构:3’-第二接头-第二条形码-第二UMI-来源于细胞DNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;3’-第二接头-第二条形码-第二UMI-来源于细胞DNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’;3’-第二接头-第二UMI-第二条形码-来源于细胞DNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;以及3’-第二接头-第二UMI-第二条形码-聚dC-来源于细胞DNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’。

  实施方案40:如任一项前述实施方案所述的方法,其中所述微流体装置包括矩阵型微流体装置,所述矩阵型微流体装置包括:捕获位点,所述捕获位点被布置于R行和C列的矩阵中,其中R和C为大于1的整数,并且其中所述捕获位点在将细胞分配至所述捕获位点之后能够彼此流体隔离;一组R个第一输入管线,所述第一输入管线被配置为将所述第一试剂递送至在特定行中的捕获位点;一组C个第二输入管线,所述第二输入管线被配置为将第二试剂递送至特定列中的捕获位点,其中所述递送与递送第一试剂分开,其中,在所述反应之后,以来自单独行或列的反应产物的汇集物(pools)从微流体装置回收反应产物。

  实施方案41:如实施方案40所述的方法,其中将RT引物经由一组输入管线递送至捕获位点,并且将5’寡核苷酸经由另一组输入管线递送至捕获位点。

  实施方案42:如实施方案40所述的方法,其中将第一扩增引物经由一组输入管线递送至捕获位点,并且将第二扩增引物经由另一组输入管线递送至捕获位点。

  实施方案43:如任一项前述实施方案所述的方法,其中所有方法步骤在所述微流体装置中进行。

  实施方案44:如前述实施方案中任一项所述的方法,其中使反应产物经历使用与第一和第二接头退火的接头引物的预扩增,其中所述接头引物为相同的或不同的。

  实施方案45:如实施方案44所述的方法,其中所述预扩增在所述微流体装置中进行。

  实施方案46:如前述实施方案中任一项所述的方法,其中使所述反应产物经历标签化。

  实施方案47:如任一项前述实施方案所述的方法,其中所述反应将一个或更多个DNA测序引物结合位点掺入到所述反应产物中。

  实施方案48:如前述实施方案中任一项所述的方法,其中使所述反应产物经历DNA测序。

  实施方案49:如实施方案48所述的方法,其中基于一种或两种条形码将从DNA测序获得的序列鉴定为来源于特定捕获位点。

  实施方案50:如实施方案40-49中任一项所述的方法,其中使所输出的汇集物分开经历一个或更多个如实施方案44-49中所述的步骤。

  实施方案51:如实施方案40-49中任一项所述的方法,其中将输出的汇集物合并为一个反应混合物,所述反应混合物经历一个或更多个如实施方案44-49中所述的步骤。

  实施方案52:如实施方案40-51中任一项所述的方法,其中所述微流体装置在至少一个表面上足够透明以允许细胞的可视化和/或当采用可视化标记物时允许与细胞或反应产物相关的信号的可视化。

  实施方案53:如实施方案52所述的方法,所述方法另外包括在执行所述反应之前使细胞占据的捕获位点成像。

  实施方案54:如任一项前述实施方案所述的方法,其中所述反应包含全转录物组扩增(WTA)、全基因组扩增(WGA)、蛋白邻位连接、微小RNA(mRNA)预扩增、RNA或DNA的靶特异性扩增。

  实施方案55:如任一项前述实施方案所述的方法,其中所述微流体装置包括至少750个捕获位点。

  实施方案56:一种矩阵型微流体装置,所述矩阵型微流体装置包括:

  多个捕获位点,所述多个捕获位点被布置于R行和C列的矩阵中,其中R和C为大于1的整数,并且其中:

  每一个捕获位点包含捕获一个或更多个细胞的捕获特征;

  在将细胞分配至所述捕获位点之后,所述捕获位点能够彼此流体隔离;

  一组R个第一输入管线,所述第一输入管线被配置为将所述第一试剂递送至在特定行中的捕获位点;和

  一组C个第二输入管线,所述第二输入管线被配置为将第二试剂递送至特定列中的捕获位点,其中所述递送与递送第一试剂分开。

  实施方案57:如实施方案56所述的装置,其中所述捕获特征被配置为捕获不多于一个单个细胞。

  实施方案58:如实施方案56或57所述的装置,其中所述微流体装置在至少一个表面上足够透明以允许细胞的可视化和/或当采用可视化标记物时允许与细胞或反应产物相关的信号的可视化。

  实施方案59:如实施方案56-58所述的装置,其中每一个捕获位点包含能够彼此流体隔离的四个室,其中所述室中的一个包含所述捕获特征。

  实施方案60:一种操作如实施方案56-59所述的微流体装置的方法,其中所述方法包括:

  (a)将来自细胞群体的细胞分配至捕获位点,使得多个捕获位点包含一个或更多个细胞;

  (b)在分配之后,将捕获位点彼此流体隔离;

  (c)将一种或更多种第一试剂经由R个第一输入管线提供至每一个流体隔离的捕获位点;

  (d)将一种或更多种第二试剂经由C个第二输入管线提供至每一个微流体隔离的捕获位点,其中所述第二试剂与所述第一试剂不同;以及

  (e)执行反应。

  实施方案61:如实施方案60所述的方法,其中多个捕获位点包含不多于一个单个细胞。

  实施方案62:如实施方案60或61所述的方法,所述方法另外包括将所述反应产物以来自每一行的反应产物的汇集物或以来自每一列的反应产物的汇集物回收。

  实施方案63:如实施方案60-62所述的方法,其中所述回收包括将收获试剂提供至所述R个第一输入管线或所述C个第二输入管线。

  实施方案64:一种用于由RNA产生cDNA的引物组合,所述组合包含:

  (a)逆转录(RT)引物,所述逆转录(RT)引物包含锚序列、所述锚序列5’的聚-dT序列、所述聚-dT序列5’的第一条形码、和所述第一条形码序列5’的第一接头;以及

  (b)5’寡核苷酸,所述5’寡核苷酸包含聚-riboG序列、所述聚-riboG序列5’的第二条形码、和所述第二条形码5’的第二接头。

  实施方案65:如实施方案64所述的引物组合,其中一种或两种引物包含UMI。

  实施方案66:一种用于扩增DNA的引物组合,所述组合包含第一和第二扩增引物,所述第一和第二扩增引物能够在合适的模板DNA存在下引发扩增子的产生,其中每一个扩增引物包含:引物序列;条形码,所述条形码在所述引物序列的5’,其中每一个引物中的所述条形码为不同的;和接头,所述接头在所述条形码的5’;其中一种或两种引物还包含在所述引物序列的5’和所述接头的3’的UMI。

  实施方案67:如实施方案64-66所述的引物组合,所述引物组合另外包含与所述接头退火的一种或更多种接头引物。

  实施方案68:如实施方案64-67所述的引物组合,其中所述接头引物包含5’接头引物和不同的3’接头引物。

  实施方案69:如实施方案68所述的引物组合,所述引物组合另外包括包含对所述3’接头引物或其互补序列特异性的部分的引物和/或包含对所述5’接头引物或其互补序列特异性的部分的引物,其中所述引物另外包含可用于桥式测序中簇产生的流动池序列。

  实施方案70:一种由RNA产生cDNA的方法,其中将如实施方案64或65所述的引物组合用于第一链合成。

  实施方案71:一种扩增DNA的方法,所述方法包括使模板DNA与如实施方案66所述的引物组合接触以产生扩增子。

  实施方案72:一种分别预扩增如实施方案70或71所述的cDNA或扩增子的方法,所述方法包括用如实施方案67和68所述的接头引物预扩增所述cDNA或扩增子。

  实施方案73:一种在如实施方案70-72中产生的cDNA或扩增子的桥式测序中的簇产生的方法,所述方法使用如实施方案69所述的引物执行簇产生。

  附图简述

  本专利或申请文件包含至少一个以颜色执行的附图。本专利或专利申请公布与彩色附图的副本将在请求并支付必要的费用后由美国专利商标局(Office)提供。

  图1A-D:在(A)中示意性地示出了说明性的矩阵型微流体装置。(B)阐释了通过R个不同的第一输入管线将R种不同条形码递送至捕获位点。(C)阐释了通过C个不同的输入管线将C种不同条形码递送至捕获位点。(D)阐释了,在进行反应之后,可以以汇集物收集每一列的反应产物,例如,通过将收获流体施加至C个第二输入管线以将反应产物从输入管线的一个末端的出口推出。

  图2:在图1中示意性示出的说明性矩阵型微流体装置的照片。

  图3:适用于在矩阵型微流体装置中捕获单个细胞的说明性捕获特征的显微照片,以及用于将条形码按行和列添加到来自捕获的细胞的反应产物的方法的说明性流程图。

  图4A-E:(A)示出了一系列越来越小型化的(increasingly more miniaturized)说明性捕获特征,这促进每个微流体装置更多细胞的分析。(B)示出了行和列中捕获特征的布置,以及用于将细胞分配至捕获特征的通道。(C)示出了小型化捕获特征的显微照片。(D)报告了两种不同捕获位点设计的细胞占据数据,其中表的顶表(top panel of the table)示出了小型化特征的结果,且表的底表(the bottom panel of the table)示出了具有不同的顶槽与底槽高度比的说明性双槽捕获特征的结果。表中的第一列报告了没有细胞的捕获特征的数目,且第二列报告了仅具有1个细胞的捕获特征的数目。(E)示出了具有两种不同捕获位点设计的IFC的示意图:一种具有降低的尺寸,且一种具有顶槽和底槽的不同高度比。

  图5:包括用于将细胞分配至捕获特征的通道的说明性双槽捕获特征的示意图。该几何结构允许每单位面积更多的捕获位点。

  图6A-D:(A)示出了在(B)中及在(C)和(D)中的显微照片中示意性地阐释的说明性双槽捕获装置中主流(main flow)和旁流(bypass flow)的流动阻力(flow resistance)。

  图7A-B示出了在(A)中和在(B)中的显微照片中示意性地阐释的说明性双槽捕获装置中的旁路蠕动泵送的活化。

  图8A-C:(A)和(B)阐释了在(A)中和在显微照片(B)中示意性地关闭说明性双槽捕获装置中的主流输出。(C)报告了双槽捕获特征设计的细胞占据数据,其中在表的列1中为没有细胞的捕获特征的数目以及在表的列2中为仅具有1个细胞的捕获特征的数目。

  图9:具有四个室的说明性单位捕获位点,每一个室对于试剂是可用的。捕获特征位于这四个室之一。在使用中,可以将第一试剂从底部至顶部(紫色箭头)装载到捕获位点,并且可以将第二试剂从左至右(绿色箭头)装载到捕获位点。

  图10:用于在实施例2中描述的单个细胞转录物组鉴定(信使[聚-A]RNA)和转录物的3’末端计数的方案。

  图11:适用于实践图10的单个细胞转录物组鉴定方案的说明性捕获位点。在被标记为显示被5个阀门(a-e)分开的四个室以及通过捕获位点(1-7)的流体流动的显微照片上示出了工作流程。

  图12示出了对捕获位点的四个室的拟议布局右侧的与图10的单个细胞转录物组鉴定相同的方案。

  图13:用于核酸的组合条形码化的说明性方案(BC1+2=两种不同条形码;Univ1和Univ2=通用引物结合位点,所述通用引物结合位点可以为相同的或不同的)。

  图14:用于RNA的靶特异性扩增的示例性方案,具有组合条形码化,随后是双端测序。

  图15:用于通过连接的核酸的组合条形码化的说明性方案(BC1+2=两种不同条形码;Univ1和Univ2=通用引物结合位点,所述通用引物结合位点可以为相同的或不同的)。

  图16:用于在蛋白邻位连接(PLA)或延伸(PEA)中使用组合条形码化的说明性方案(BC1+2=两种不同条形码;Univ1和Univ2=通用引物结合位点,所述通用引物结合位点可以为相同的或不同的)。

  图17:用于使用酶(诸如转座酶)引入条形码的组合条形码化的说明性方案(BC1+2=两种不同条形码;Univ1和Univ2=通用引物结合位点,所述通用引物结合位点可以为相同的或不同的)。

  图18:来自测序研究的说明性数据,其中序列在矩阵型微流体装置上被条形码化,随后进行测序,并且使用列和行条形码“解多重复用(demultiplexing)”以将特定的测序读段归于特定捕获位点。

  图19:来自测序研究的说明性数据,其中序列在矩阵型微流体装置上被条形码化,随后进行测序,并且使用列和行条形码“解多重复用”以将特定的测序读段归于特定捕获位点。

  详细描述

  本文描述了一种在HT IFCTM上的清洁的(hygienic)条形码策略,以允许在IFCTM后从许多单个细胞(或小数目的细胞)汇集cDNA,其中在分析转录物后,细胞可以使用在每一个分子上的细胞特异性条形码彼此解多重复用。该策略可以被设计为通过扩增来促进简单的条形码富集,使得查询的大部分物质将被条形码化,而不是不能归于特定细胞的导致产生不可用的序列数据的cDNA物质被条形码化。

  用于单个细胞的其他条形码化的cDNA富集策略牵涉定制的转座子和生物素-链霉亲和素-下拉(pulldown),增加了富集的工作流程复杂性,且同时由于这种类型的清除的性质,潜在地降低可用于测序的物质的量。基于扩增的条形码富集策略能够一次对于大量细胞而不是一个细胞进行单个标签化反应,无需下拉或额外的清除步骤,且无需产生定制转座子。

  本文还描述了一种IFCTM体系结构,其能够处理与促进细胞内大分子分析的任何多步生物化学方法组合谨慎捕获或隔离的单个细胞(或细胞的组)。此类方法包括,但不限于,用于DNA测序的全基因组扩增(WGA)、用于定量特定蛋白的多重蛋白邻位连接测定、多重微小RNA预扩增、RNA转录物或DNA序列的靶特异性扩增(例如,基因分型多态标志、诸如SNP,或以其他方式分析遗传变异,诸如拷贝数变异(copy number variations))、靶向重测序或其任何组合。另外,使用新颖的IFCTM体系结构,对与IFCTM相关的控制脚本的简单修改能够实时检测单个细胞的转录物,这可以将例如实现集成热和气动控制的控制器与串联的所有单位细胞(unit cells)的光学检测组合使用。这种组合提供了将表型与基因表达分析相联系的能力,同时消除了长时间和不期望的仪器外(off-instrument)成像步骤。这种体系结构也可以被用于在任何期望条件下培养谨慎捕获/隔离的细胞或细胞的组,这可以通过添加组分诸如,例如,针对特定受体的激动剂或拮抗剂在芯片上(on-chip)进行修饰。

  定义

  除非另有说明,否则在权利要求书和说明书中使用的术语如下文列出的来定义。这些术语出于清楚起见而定义,但所有定义与本领域技术人员将如何理解这些术语一致。

  如本文使用的,术语“微流体装置”指包含其中至少一个尺寸小于1毫米的室和/或通道的任何装置。在某些实施方案中,微流体装置包含用于控制或调控通过流体通道的流动的流体流动通道(或管线)和分开控制通道(或管线)。

  术语核酸包括DNA或RNA的任何形式,包括例如,基因组DNA;互补DNA(cDNA),其为mRNA的DNA表示,通常通过信使RNA(mRNA)的逆转录或通过扩增获得;合成或通过扩增产生的DNA分子;以及mRNA。

  术语核酸包括双链或三链核酸以及单链分子。在双链或三链核酸中,核酸链不必为共延伸的(coextensive)(即,双链核酸不必沿着两条链的整个长度为双链的)。

  术语核酸还包括其任何化学修饰,诸如通过甲基化和/或通过加帽(capping)。核酸修饰可以包括将化学基团添加至单独的核酸碱基或作为一个整体的核酸,所述化学基团掺入另外的电荷、可极化性(polarizability)、氢键、静电相互作用和官能度。此类修饰可以包括碱基修饰,诸如2’-位置糖修饰、5-位置嘧啶修饰、8-位置嘌呤修饰、在胞嘧啶环外胺的修饰、5-溴尿嘧啶的取代、骨架修饰、异常碱基配对组合诸如异碱基(isobases)异胞苷(isocytidine)和异胍(isoguanidine)等。

  更具体地,在某些实施方案中,核酸可以包括多脱氧核糖核苷酸(包含2-脱氧-D-核糖)、多核糖核苷酸(包含D-核糖)和为嘌呤或嘧啶碱基的N-或C-糖苷的任何其他类型核酸,以及包含非核苷酸骨架的其他聚合物,例如聚酰胺(例如,肽核酸(PNA))和聚吗啉(作为Neugene从Anti-Virals Inc,Corvallis,Oregon.商购可得)聚合物,以及其他合成的序列特异性核酸聚合物,条件是聚合物包含允许诸如在DNA和RNA中发现的碱基配对和碱基堆积的构型中的核碱基(nucleobases)。术语核酸还包括在美国专利第6,794,499号、第6,670,461号、第6,262,490号、和第6,770,748号中描述的连接核酸(linked nucleic acids)(LNA),所述美国专利关于其LNA的公开内容通过引用以其整体并入本文。

  核酸可以来源于完全化学合成过程,诸如固相介导的化学合成,来自生物来源;诸如通过从产生核酸的任何物种分离,或者来源于牵涉通过分子生物学工具,诸如DNA复制、PCR扩增、逆转录操作核酸的过程,或来源于这些过程的组合。

  本文使用的术语“模板”指用作聚合酶合成互补核酸分子的模板的核酸分子。

  术语“模板核酸”为包括“靶核酸”的一般术语。

  术语“靶核酸”在本文中用于指在本文描述的方法中待检测的特定核酸。因此,例如,单核苷酸多态性(SNP)的扩增为靶特异性扩增的实例,而全基因组扩增为旨在扩增基因组中所有模板核酸的扩增的实例。

  如本文使用的,术语“靶核苷酸序列”指包含靶核酸的核苷酸序列的分子,诸如,例如通过扩增靶核酸获得的扩增产物或逆转录RNA靶核酸后产生的cDNA。

  如本文使用的,术语“互补”指两个核苷酸之间精确配对的能力。即,如果核酸的给定位置处的核苷酸能够与另一个核酸的核苷酸氢键键合,则这两个核酸被认为在该位置处彼此互补。两个单链核酸分子之间的互补性可以是“部分的”,其中仅一些核苷酸结合,或当在单链分子之间存在总互补性(total complementarity)时,它可以是完整的。核酸链之间的互补性的程度对核酸链之间杂交的效率和强度具有显著影响。如果第一核苷酸序列与第二核苷酸序列互补,则第一个核苷酸序列被称为第二个序列的“互补序列”。如果第一核苷酸序列与第二序列反向的序列互补(即核苷酸顺序被逆转),则第一核苷酸序列被称为第二序列的“反向互补序列”。

  “特异性杂交”指在定义的严格条件下,在不存在对杂交混合物中存在的其他核苷酸序列的实质结合下,核酸与靶核苷酸序列的结合。本领域技术人员认识到,放松杂交条件的严格性允许耐受序列错配。

  在特定实施方案中,杂交在严格的杂交条件下进行。措辞“严格杂交条件”通常指在定义的离子强度和pH在低于特定序列的解链温度(Tm)从约5℃至约20℃或25℃的范围内的温度。如本文使用的,Tm为双链核酸分子的群体半解离(half-dissociated)为单链时的温度。用于计算核酸Tm的方法为本领域熟知的(参见,例如,Berger和Kimmel(1987)METHODS IN ENZYMOLOGY,第152卷:GUIDE TO MOLECULAR CLONING TECHNIQUES,San Diego:Academic Press,Inc.以及Sambrook等(1989)MOLECULAR CLONING:A LABORATORY MANUAL,第2版,第1-3卷,Cold Spring Harbor Laboratory),两者通过引用并入本文)。如由标准参考文献所指示的,当核酸在1M NaCl水溶液中时,Tm值的简单估计可以通过等式:Tm=81.5+0.41(%G+C)计算,(参见例如,Anderson和Young,Quantitative Filter Hybridization in NUCLEIC ACID HYBRIDIZATION(1985))。杂交体的解链温度(并且因此用于严格杂交的条件)受多种因素影响,所述多种因素诸如引物或探针的长度和性质(DNA、RNA、碱基组成)以及靶核酸的性质(DNA、RNA、碱基组成、存在于溶液中或被固定等)及盐和其他组分的浓度(例如,甲酰胺、硫酸葡聚糖、聚乙二醇的存在或不存在)。这些因素的影响为本领域熟知的,并且在本领域的标准参考文献中讨论。适用于实现大多数序列特异性杂交的说明性严格条件为:至少约60℃的温度和在pH7约0.2M的盐浓度。

  术语“寡核苷酸”用于指是相对短的,通常短于200个核苷酸,更特别地,短于100个核苷酸,最特别地,短于50个核苷酸的核酸。通常,寡核苷酸为单链DNA分子。

  术语“引物”指能够在适当的缓冲液中和在合适的温度,在适当的条件下(即,在四种不同的核苷三磷酸和用于聚合的剂,诸如DNA或RNA聚合酶或逆转录酶的存在下)与核酸杂交(还称为“退火”)并用作用于核苷酸(RNA或DNA)聚合的起始位点的寡核苷酸。术语“引物位点”或“引物结合位点”指引物与其杂交的靶核酸区段。

  如果引物或其一部分与另一核酸内的核苷酸序列杂交,则引物被称为与该核酸退火。引物与特定核苷酸序列杂交的陈述并不意图暗示引物与该核苷酸序列完全地或排他地杂交。

  术语“引物对”指一组引物,其包括与待扩增的DNA序列的5’末端的互补序列杂交的5’“上游引物”或“正向引物”和与待扩增的序列的3’末端杂交的3’“下游引物”或“反向引物”。如本领域技术人员将认识到的,术语“上游”和“下游”或“正向”和“反向”不意图为限制性的,而是在特定实施方案中提供说明性的方向。

  引物或探针可以与靶核酸序列完全互补,或者可以不太完全互补。在某些实施方案中,引物与靶核酸序列的互补序列在至少7个核苷酸的序列上,更通常在10-30个核苷酸的范围内的序列上,并且通常在至少14-25个核苷酸的序列上具有至少65%的同一性,并且更通常具有至少75%同一性、至少85%同一性、至少90%同一性、或至少95%、96%、97%、98%、或99%同一性。将理解,某些碱基(例如,引物的3’碱基)通常可期望与靶核酸序列的相应碱基完全互补。引物和探针通常在严格杂交条件下与靶序列退火。

  如本文使用的,术语“核苷酸条形码”和“条形码”指编码关于当条形码化的引物或寡核苷酸被用于逆转录时产生的cDNA或者当一种或更多种条形码化的引物被用于扩增反应时产生的扩增子的信息的特定核苷酸序列。如在图16和17中示出的,条形码也可以通过其他方式诸如通过连接或经由转座酶添加至核苷酸序列中。

  在一些实施方案中,条形码编码“一项捕获位点信息”。例如,对于在矩阵型微流体装置上进行的反应,条形码可以编码捕获位点的行或列。两种条形码(一种编码在其中该条形码被引入的行且另一种编码在其中该条形码被引入的列)可以定义驻留在由条形码鉴定的行和列的交叉点处的特定捕获位点。

  如本文使用的,“UMI”为“独特的分子索引物(unique molecular index)”的缩写,也称为“分子索引物”。UMI为一组索引物中的一个,其中每一个索引物(或条形码)具有与该组中的任何其他索引物不同的索引物序列。实现这种“独特性”的一种方式为使用一串核苷酸。例如,如果该串的长度为10个碱基,则存在多于100万个独特的序列;如果它为20个碱基长,将存在1012个独特的序列。参见Hug和Schulernz,“Measurement of the Number of Molecules of a Single mRNA Species in a Complex mRNA Preparation,”J.Theor.Biol.(2003)221,615–624以及Hollas和Schuler,“A Stochastic Approach to Count RNA Molecules Using DNA Sequencing Methods”in Algorithms in Bioinformatics(2003):Third International Workshop,WABI 2003,Budapest,Hungary,September 15-20,2003,Series title:Lecture Notes in Computer Science第2812卷,第55-62页(编者Benson和Page)。

  “接头”可以但不必为或包含核酸。可以将核苷酸接头添加至待扩增的核苷酸序列的任一末端,以使用对核苷酸接头特异性的、可以为相同的或不同的引物进行无偏倚扩增。

  如本文使用的,“锚序列”指寡核苷酸中的用于锁定靶序列的序列,通常在相同的核苷酸碱基的链段之后。它通常发生在寡核苷酸的3’末端,但不限于该位置。它可以由随机核苷酸组成,通常不包括该链段的核苷酸。例如,在引物(或寡核苷酸)中的聚-dT段后的说明性锚序列可以由包含任何或所有碱基A、G和/或C而不是T的第一位置或部分组成。第二位置或部分可以包含在引物或寡核苷酸末端上的碱基的任何组合或所有碱基(A、G、T、C)。

  当在本文用于指核酸中的两个核苷酸序列时,术语“相邻”可以指由1个至约50个核苷酸,更具体地,由约1个至约20个核苷酸的范围,甚至更具体地,由约1个至约10个核苷酸的范围分开的核苷酸序列,或者指彼此直接邻接(由0个核苷酸分开)的序列。

  如本文提及引物部分使用的,术语“靶特异性”核苷酸序列指在合适的退火条件下可以与靶核酸或靶核苷酸序列特异性退火的序列。引物部分对除了靶以外的核苷酸序列,在相同意义上可以是“特异性的”。

  根据本发明的教导,扩增包括至少一种靶核酸的至少一部分藉以复制、通常以模板依赖性方式复制的任何手段(means),包括但不限于,用于线性或指数扩增核酸序列的宽范围技术。用于进行扩增步骤的说明性手段包括连接酶链式反应(LCR)、连接酶检测反应(LDR)、连接随后是Q-复制酶扩增、PCR、引物延伸、链置换扩增(SDA)、超支化链置换扩增(hyperbranched strand displacement amplification)、多重置换扩增(MDA)、基于核酸链的扩增(NASBA)、两步多重扩增、滚环扩增(RCA)等,包括其多重版本及组合,例如,但不限于,OLA/PCR、PCR/OLA、LDR/PCR、PCR/PCR/LDR、PCR/LDR、LCR/PCR、PCR/LCR(还称为组合链式反应(combined chain reaction)--CCR)等。此类技术的描述可以见于以下以及其他来源中:Ausbel等;PCR Primer:A Laboratory Manual,Diffenbach,编著,Cold Spring Harbor Press(1995);The Electronic Protocol Book,Chang Bioscience(2002);Msuih等,J.Clin.Micro.34:501-07(1996);The Nucleic Acid Protocols Handbook,R.Rapley,编著,Humana Press,Totowa,N.J.(2002);Abramson等,Curr Opin Biotechnol.1993Feb.;4(1):41-7,美国专利第6,027,998号;美国专利第6,605,451号,Barany等,PCT公布第WO 97/31256号,Wenz等,PCT公布第WO 01/92579号;Day等,Genomics,29(1):152-162(1995),Ehrlich等,Science 252:1643-50(1991);Innis等,PCR Protocols:A Guide to Methods and Applications,Academic Press(1990);Favis等,Nature Biotechnology 18:561-64(2000);以及Rabenau等,Infection 28:97-102(2000);Belgrader、Barany、和Lubin,Development of a Multiplex Ligation Detection Reaction DNA Typing Assay,Sixth International Symposium on Human Identification,1995(available on the world wide web at:promega.com/geneticidproc/ussymp6proc/blegrad.html-);LCR Kit Instruction Manual,目录号#200520、Rev.#050002,Stratagene,2002;Barany,Proc.Natl.Acad.Sci.USA 88:188-93(1991);Bi和Sambrook,Nucl.Acids Res.25:2924-2951(1997);Zirvi等,Nucl.Acid Res.27:e40i-viii(1999);Dean等,Proc Natl Acad Sci USA 99:5261-66(2002);Barany和Gelfand,Gene 109:1-11(1991);Walker等,Nucl.Acid Res.20:1691-96(1992);Polstra等,BMC Inf.Dis.2:18-(2002);Lage等,Genome Res.2003Feb.;13(2):294-307,以及Landegren等,Science 241:1077-80(1988),Demidov,V.,Expert Rev Mol Diagn.2002第2卷(6):542-8.,Cook等,J Microbiol Methods.2003 May;53(2):165-74,Schweitzer等,Curr Opin Biotechnol.2001 Feb.;12(1):21-7,美国专利第5,830,711号,美国专利第6,027,889号,美国专利第5,686,243号,PCT公布第WO0056927A3号,以及PCT公布第WO9803673A1号。

  在一些实施方案中,扩增包括至少一个循环的以下顺序程序:使至少一个引物与在至少一种靶核酸中的互补或基本上互补的序列退火;使用聚合酶以模板依赖性方式合成至少一条核苷酸链;并使新形成的核酸双链体变性以分离链。循环可以重复或者可以不重复。扩增可以包括热循环或可以等温进行。

  “全转录物组扩增”(“WTA”)指旨在产生以下扩增产物的任何扩增方法,该扩增产物代表来自由其制备该扩增产物的细胞的RNA的群体。说明性WTA方法需要在任一端产生促进无偏倚扩增的携带接头的cDNA。在许多实施中,进行WTA以分析信使(聚-A)RNA(这也称为“RNAseq”)。

  “全基因组扩增”(“WGA”)指旨在产生以下扩增产物的任何扩增方法,该扩增产物代表由其扩增该扩增产物的基因组。说明性WGA方法包括引物延伸PCR(PEP)和改进的PEP(I-PEP)、简并寡核苷酸引发的PCR(DOP-PCR)、连接介导的PCR(LMP)、基于T7的DNA线性扩增(TLAD)、多重置换扩增(MDA)。

  如本文提及参数使用的术语“基本上”意指该参数足以提供有用的结果。因此,如应用于核酸序列的“基本上互补”通常意指足够互补以在所描述上下文中工作。通常,基本上互补意指足够互补以在所采用的条件下杂交。

  “试剂”广义上指反应中使用的除了分析物(例如,被分析的核酸)以外的任何剂。用于核酸扩增反应的说明性试剂包括,但不限于,缓冲液、金属离子、聚合酶、逆转录酶、引物、核苷酸、寡核苷酸、标记物、染料、核酸酶等。用于酶反应的试剂包括,例如,底物、辅因子、缓冲液、金属离子、抑制剂、和活化剂。术语试剂还包括影响细胞生长或行为的任何组分,诸如,例如,缓冲液,培养基或其组分,激动剂或拮抗剂等。

  如本文使用的术语“标记物”指可用于提供可检测和/或可定量信号的任何原子或分子。特别地,标记物可以直接或间接地附连至核酸或蛋白。可以被附连至探针的合适的标记物包括,但不限于,放射性同位素、荧光团、生色团、质量标记物、电子致密颗粒、磁性颗粒、自旋标记物(spin labels)、发射化学发光的分子、电化学活性分子、酶、辅因子、和酶底物。

  如本文使用的,术语“染色剂(stain)”通常指与组分结合以促进检测该组分的任何有机或无机分子。

  如本文使用的术语“染料(dye)”通常指吸收在波长大于或等于340nm处的电磁辐射的任何有机或无机分子。

  如本文使用的术语“荧光染料”通常指在被电磁辐射源(诸如灯、光电二极管或激光)辐射后通过荧光机制发射较长波长的电磁辐射的任何染料。

  如本文使用的,术语“变异”用于指任何差异。变异可以指个人或群体之间的差异。变异包括与普通或正常情况的差异。因此,“拷贝数变异”或“突变”可以指与普通或正常拷贝数或核苷酸序列的差异。“表达水平变异”或“剪接变体”可以指与特定细胞或组织、发育阶段、条件等的普通或正常表达水平或RNA或蛋白不同的表达水平或RNA或蛋白。

  “多态标志”或“多态位点”为在其核苷酸序列趋异性(divergence)发生的基因座。说明性标志具有至少两个等位基因,每一个等位基因以大于选择群体的1%,且更典型地大于10%或20%的频率发生。多态位点可以小至一个碱基对。多态标志包括限制性片段长度多态性(RFLP)、可变数目串联重复序列(VNTR)、高变区、小卫星、二核苷酸重复、三核苷酸重复、四核苷酸重复、简单序列重复、缺失和插入元件诸如Alu。第一个被鉴定的等位基因形式被任意指定为参考形式,且其他等位基因形式被指定为替代或变异等位基因。在选择群体中最常发生的等位基因形式有时被称为野生型形式。二倍体生物体可以为等位基因形式的纯合子或杂合子。双等位基因多态性(diallelic polymorphism)具有两种形式。三等位基因多态性(triallelic polymorphism)具有三种形式。

  “单核苷酸多态性”(SNP)发生在被单个核苷酸占据的多态位点,这为等位基因序列之间的变异位点。该位点通常前后为等位基因的高度保守序列(例如,在群体的小于1/100或1/1000个成员中变化的序列)。SNP通常由于在多态位点一种核苷酸取代为另一种核苷酸而产生。转换为一种嘌呤替代为另一种嘌呤或一种嘧啶替代为另一种嘧啶。颠换(transversion)为嘌呤替代为嘧啶,或者反之亦然。SNP也可以起因于相对于参考等位基因的核苷酸的缺失或核苷酸的插入。

  如本文关于反应、反应混合物、反应体积等使用的,术语“分开的”指其中反应与其他反应隔离进行的反应、反应混合物、反应体积等。分开的反应、反应混合物、反应体积等包括在液滴中进行的那些(参见,例如,2007年11月13日授予Quake等的标题为“Microfabricated crossflow devices and methods,”的美国专利第7,294,503号,其通过引用以其整体并入本文并且特别是关于其对用于形成和分析液滴的装置和方法的描述;由Link等2010年2月28日公布的,标题为“Droplet libraries,”的美国专利公布第20100022414号,其通过引用以其整体并入本文并且特别是关于其对用于形成和分析液滴的装置和方法的描述;以及由Miller等2011年1月6日公布的标题为“Manipulation of Microfluidic Droplets,”的美国专利公布第20110000560号,其通过引用以其整体并入本文并且特别是关于其对用于形成和分析液滴的装置和方法的描述),液滴可以但不必在乳状液,以及其中反应、反应混合物、反应体积等通过机械屏障分开的那些中,例如分开的容器、微量滴定板的分开的孔、或矩阵型微流体装置的分开的隔室。

  术语“流体隔离的”在本文用于指微流体装置的两个或更多个元件彼此不流体连通的状态。

  术语“弹性体”具有本领域使用的一般含义。因此,例如,Allcock等(Contemporary Polymer Chemistry,第2版)通常将弹性体描述为在其玻璃化转换温度与液化温度之间的温度存在的聚合物。弹性体物质表现出弹性特性,因为聚合物链容易经历扭转运动,以允许响应于力而使骨架链开卷(uncoiling),其中骨架链在力的不存在下回缩(recoiling)以呈现先前的形状。通常,当施加力时弹性体变形,但然后当力被去除时,弹性体恢复至其原始形状。

  基于细胞的分析方法

  本文描述了一种将来自群体的细胞暴露于至少两种不同试剂的方法,其中每一个细胞被单独地或以两个或更多个的组暴露于所述试剂。该方法需要将来自群体的细胞分配至微流体装置中的多个捕获位点,使得多个捕获位点各自具有一个或更多个捕获或隔离的细胞。在多种实施方案中,捕获位点具有2个、3个、4个、5个、6个、7个、8个、9个、10个、50个、100个、200个、300个、400个、500个、600个、700个、800个、900个或1000个细胞的组或具有由任何这些值限定的范围内的细胞数目的组。在一些实施方案中,通过采取每个捕获位点的平均细胞数目来定义这些值。

  将一种或更多种第一试剂提供至每一个捕获位点,并且将一种或更多种第二试剂提供至每一个捕获位点,其中所述第二试剂与所述第一试剂不同,并且与第一试剂分开地提供。例如,可以将每一对试剂提供至捕获位点中彼此不同并且任选地与包含捕获特征的室不同的一对可流体隔离的室。

  在一些实施方案中,微流体装置的至少一个表面为透明的,以允许细胞或来自标记物的信号的可视化。在此类实施方案中,该方法可以任选地包括在执行反应之前使细胞占据的捕获位点成像。

  一种或更多种试剂可以为支持细胞生长、调控细胞行为和/或促进细胞组分(无论是在细胞表面还是细胞内)的检测的剂。事实上,试剂可以为技术人员可能希望与细胞或其内容物接触的任何分子或组合物。可以对群体中的单个细胞或细胞的组进行的分析的实例可以见于美国专利公布第20130323732号,其通过引用以其整体和关于该描述并入本文。可用于这些分析中的试剂在美国专利公布第20130323732号中描述和/或将为本领域技术人员已知的。

  在一些实施方案中,在每一个捕获位点(与每一个其他捕获位点分开地)进行反应,由此反应产物编码一项捕获位点信息。反应产物可以从微流体装置回收并经历进一步分析。该进一步分析可以包括例如至少部分基于所述一项捕获位点信息将特定反应产物鉴定为来源于在特定捕获位点的单个细胞或细胞的组。

  在一些实施方案中,该方法需要将核酸序列掺入到来自细胞群体的反应产物中,其中将核酸序列掺入到单独地每一个细胞或细胞的组的反应产物中。在多种实施方案中,将核酸序列单独地掺入到2个、3个、4个、5个、6个、7个、8个、9个、10个、50个、100个、200个、300个、400个、500个、600个、700个、800个、900个或1000个细胞的分开的组或掺入到具有由任何这些值限定的范围内的细胞数目的组。在一些实施方案中,通过采取每个捕获位点的平均细胞数目来定义这些值。该方法需要将来自群体的细胞分配至微流体装置中的多个捕获位点,使得多个捕获位点各自包含不多于一个单个细胞,或者在细胞将被以组分析时,不多于对于每一个细胞的组所期望数目的细胞。在一些实施方案中,例如,在整个装置的细胞分配之后,捕获位点能够彼此流体隔离。在某些实施方案中,捕获位点各自具有将细胞或细胞的组保持在该位置的捕获特征。在一些实施方案中,捕获特征驻留在可以与捕获位点内的其他室流体隔离的室内。

  在一些实施方案中,执行将核酸序列单独地掺入到每一个细胞或细胞的组的反应产物中的反应。如本领域技术人员容易地认识到,如果反应针对细胞内模板或靶,诸如mRNA或基因组DNA,则该方法通常将需要细胞透化或裂解步骤以将一种或两种试剂暴露于细胞内模板/靶。

  然后将反应产物以以下的方式回收并分析,所述方式允许将特定反应产物鉴定为来源于在特定捕获位点的单个细胞或细胞的组。可以实现该鉴定的一种方式为通过将条形码掺入到反应产物中。此类条形码可以编码一项捕获位点信息。条形码几乎可以为任何长度,尽管在反应产物要经历DNA测序时,较短的条形码(例如,长度为4-6个核苷酸)在一些实施方案中可以为优选的。在多种实施方案中,合适的条形码长度为2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、15个、16个、17个、18个、19个或20个核苷酸,或者可以落入由任何这些值限定的范围内,例如2-10或3-8。

  该方法特别适用于分析来自细胞的核酸,无论是DNA或RNA,尽管其他分子(蛋白、碳水化合物、脂类等)也可以被分析,并且该方法可以应用于分析任何颗粒或颗粒的组(例如,细胞的细胞器、脂质体等)。几乎可以在该方法中进行任何类型的反应或一系列反应。在某些实施方案中,反应将核酸序列引入到细胞的核酸或细胞的组的核酸。在这些实施方案中,反应可以包括逆转录、扩增、连接或可以对核酸进行的任何其他反应。实例包括全转录组扩增(WTA;参见在图10-12中示出的说明性实施方案)、全基因组扩增(WGA;参见在图13中示出的说明性实施方案)、微小RNA(mRNA)预扩增、RNA(参见在图14中示出的说明性实施方案)或DNA(参见在图13中示出的说明性实施方案,其中每一个引物的模板特异性部分为靶特异性的)的靶特异性扩增、蛋白邻位连接(参见在图16中示出的说明性实施方案)和转座(参见在图17中示出的说明性实施方案)。

  本文描述的方法可以用于分析来自任何类型细胞的核酸,例如,来自任何自复制的膜结合的生物实体或其任何非复制的膜结合的后代的核酸。非复制后代可以为衰老细胞、终末分化细胞、细胞嵌合体、血清饥饿细胞、感染的细胞、非复制突变体、无核细胞、完整核和固定的完整(死亡)细胞等。本文描述的方法中使用的细胞可以具有任何来源、遗传背景、健康状态、固定状态、膜通透性、预处理和/或群体纯度以及其他特征。合适的细胞可以为真核的、原核的、古核生物(archaeon)等,并且可以来自动物、植物、真菌、原生生物(protists)、细菌等。在说明性实施方案中,对人类细胞进行分析。细胞可以来自生物发育的任何阶段,例如在哺乳动物细胞(例如,人类细胞)的情况下,可以分析胚胎细胞、胎儿细胞(fetal cell)或成体细胞。在某些实施方案中,细胞为干细胞。细胞可以为野生型;天然、化学或病毒突变体;工程化突变体(诸如转基因);等。另外,细胞可以呈生长、静止(quiescent)、衰老、转化和/或永生化以及其他状态。此外,细胞可以为单一培养物(monoculture),通常作为来自单个细胞或一小组非常相似的细胞的克隆群体获得;可以通过任何合适的机制,诸如亲和力结合、FACS、药物选择等预分选;和/或可以为不同细胞类型的混合的或异质群体。

  本文描述的方法的一个优势为它们可以用于分析几乎任何数目的单个细胞。在多种实施方案中,分析的单个细胞的数目可以为约10个、约50个、约100个、约500个、约1000个、约2000个、约3000个、约4000个、约5000个、约6000个、约7,000个、约8000个、约9,000个、约10,000个、约15,000个、约20,000个、约25,000个、约30,000个、约35,000个、约40,000个、约45,000个、约50,000个、约75,000个、或约100,000个或更多个。在具体实施方案中,分析的细胞数目可以落入由以上列出的任何两个值限定的范围内。

  在一些实施方案中,该方法可以在矩阵型微流体装置(下文进一步描述)上进行,这促进引入鉴定装置中的特定行的条形码和鉴定特定列的条形码,由此该组合独特地鉴定特定捕获位点,并因此鉴定反应产物来源于的特定细胞或细胞的组。该方法已经在此类装置上进行了测试,并证明其工作(参见在图18和19中示出的结果)。

  在一些实施方案中,每一个反应可以掺入至少一种UMI,所述UMI为独特地鉴定该UMI被掺入到其中的分子的核酸序列。在此类实施方案的变化形式中,除了一种或更多种UMI以外,反应还掺入一种或更多种条形码。UMI可以为任何长度,并且给定分析所需的长度将随着待鉴定的独特分子的数目增加而增加。在多种实施方案中,合适的UMI长度为2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、15个、16个、17个、18个、19个或20个核苷酸,或者可以落入由任何这些值限定的范围内,例如2-10、3-8、4-7或5-6。

  将珠和/或用于标记RNA或DNA进行分析的序列标签的组合使用可以避免在分析之前对预扩增的需要,并使矩阵型微流体装置可重复使用。

  RNA分析

  在一些实施方案中,将以上描述的方法应用于RNA分析。在这种情况下,在每一个捕获位点进行的反应可以包括RNA的逆转录,例如,第二链合成以产生cDNA。

  在适用于例如转录物组分析(例如,在如以上描述的单个细胞或细胞的组中的转录物组分析)的特定方法中,第一试剂可以包括逆转录(RT)引物。将说明性的RT引物(“3’RT引物”)示于图10中。该RT引物包括聚-dT序列5’的第一条形码(“bc”)。聚-dT序列应该足够长以退火至mRNA的聚-A尾,所述聚-dT序列长度通常为18-30个核苷酸的量级。该RT引物任选地包含第一UMI,所述第一UMI也优选地存在于聚-dT序列的5’。图10示出了UMI 5’的第一条形码;然而,本领域技术人员认识到这些元件的顺序可以被颠倒。如在图10中示出的,RT引物可以另外包含优选地在RT引物的5’末端的第一接头。第一接头可以用于促进无偏倚扩增,以及其中进行DNA测序时标签化之后的3’末端富集。在一些实施方案中,RT引物另外包含聚-dT序列3’的锚序列。锚序列的长度和组成可以变化,并且用于特定分析的合适锚序列的选择在本领域技术水平内。通常,锚序列长度为至少两个核苷酸。

  在一些实施方案中,第二试剂包含5’寡核苷酸,所述5’寡核苷酸包含聚-riboG序列。将这种类型的说明性寡核苷酸示于图10中。该寡核苷酸被标为代表“模板切换寡核苷酸(template-switching oligonucleotide)”的“TSO oligo”。该5’寡核苷酸可以包含聚-riboG序列5’的第二条形码(例如,在图10中示出为聚-riboG序列和接头之间的两个条之一)。5’寡核苷酸可以任选地包含第二UMI,所述第二UMI可以与第一UMI相同或不同,所述第二UMI也优选地在聚-riboG序列的5’(例如,在图10中示出为聚-riboG序列和接头之间的两个条的另一个)。如在图10中示出的,5’寡核苷酸可以另外包含优选地在5’寡核苷酸的5’末端的第二接头。第二接头可以与第一接头相同或不同,并且如第一接头,可以用于促进无偏倚扩增。

  在特定实施方案中,在微流体装置中如下文描述进行该方法。在这种情况下,可以将RT引物经由一组输入管线递送至捕获位点,并且可以将5’寡核苷酸经由另一组输入管线递送至捕获位点。

  在某些实施方案中,在以上描述方法之一中使用这两种试剂产生cDNA,该cDNA中一条链具有以下结构:5’-第二接头-来源于RNA的核苷酸序列-第一接头-3’,且至少一种条形码位于接头之间。在该实施方案的变化形式中,第一条形码与第一接头相邻定位和/或第二条形码与第二接头相邻定位。例如,cDNA的一条链可以具有以下结构:

  3’-第二接头-聚dC-来源于RNA的核苷酸序列-第一条形码-第一接头-5’。

  在包括第二条形码的情况下,cDNA的一条链可以具有以下结构:

  3’-第二接头-第二条形码-聚dC-来源于RNA的核苷酸序列-第一条形码-第一接头-5’。

  包含UMI可以产生,例如:

  3’-第二接头-聚dC-来源于RNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;或

  3’-第二接头-聚dC-来源于RNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’。

  并且包含第二UMI可以产生,例如:

  3’-第二接头-第二条形码-第二UMI-聚dC-来源于RNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;

  3’-第二接头-第二条形码-第二UMI-聚dC-来源于RNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’;

  3’-第二接头-第二UMI-第二条形码-聚dC-来源于RNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;或

  3’-第二接头-第二UMI-第二条形码-聚dC-来源于RNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’。

  DNA分析

  如本领域技术人员理解的,以上描述的用于RNA分析的化学可适用于DNA分析,例如其中在每一个捕获位点进行的反应包括DNA的扩增。

  在特定DNA扩增实施方案中,第一和/或第二试剂分别包含第一和/或第二扩增引物,其中第一和/或第二扩增引物分别包含在引物序列的5’的第一或第二条形码。引物序列可以为随机的或被设计为用于扩增特定的靶核酸(即,“靶特异性”)。在一些实施方案中,第一和/或第二扩增引物可以分别另外包含第一或第二UMI。任何UMI优选地在引物序列的5’。在一些实施方案中,第一和/或第二扩增引物另外包含优选地在引物的5’末端的第一或第二接头,例如,以促进无偏倚扩增。以上关于条形码和UMI的合适长度和序列的讨论同样适用于DNA分析环境。对于包含条形码和UMI的引物,它们相对于彼此的位置不是关键的。

  在特定实施方案中,在微流体装置中如下文描述进行DNA扩增。在这种情况下,可以将第一扩增引物经由一组输入管线递送至捕获位点,并且可以将第二扩增引物经由另一组输入管线递送至捕获位点。

  在某些实施方案中,在以上描述方法之一中使用两种此类扩增引物产生扩增子,所述扩增子中一条链具有以下结构:5’-第二接头-来源于样品DNA的核苷酸序列-第一接头-3’,其中条形码位于接头之间。例如,扩增子的一条链可以具有以下结构:

  3’-第二接头-来源于样品DNA的核苷酸序列-第一条形码-第一接头-5’。

  在包括第二条形码的情况下,扩增子的一条链可以具有以下结构:

  3’-第二接头-第二条形码-来源于样品DNA的核苷酸序列-第一条形码-第一接头-5’。

  包含UMI可以产生,例如:

  3’-第二接头-来源于样品DNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;或

  3’-第二接头-来源于样品DNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’。

  并且包含第二UMI可以产生,例如:

  3’-第二接头-第二条形码-第二UMI-来源于样品DNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;

  3’-第二接头-第二条形码-第二UMI-来源于样品DNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’;

  3’-第二接头-第二UMI-第二条形码-来源于样品DNA的核苷酸序列-第一UMI-第一条形码-第一接头-5’;或

  3’-第二接头-第二UMI-第二条形码-聚dC-来源于样品DNA的核苷酸序列-第一条形码-第一UMI-第一接头-5’。

  在任何以上描述的方法中,所有方法步骤可以但不必在微流体装置中进行。

  任何这些方法可以任选地包括预扩增,最方便地在将接头添加至cDNA或DNA的任一末端之后预扩增。例如,可以进行预扩增以在进一步表征(诸如,例如,DNA测序)之前增加cDNA或扩增子的水平。可以使用与第一和第二接头退火的接头引物进行预扩增,其中接头引物为相同的或不同的(取决于接头本身是相同还是不同的)。预扩增可以在微流体装置中进行,或者在反应产物从装置输出之后进行。

  在一些实施方案中,可以进行任何以上描述的方法以制备用于DNA测序的模板。在此类实施方案中,在微流体装置中进行的反应可以将一个或更多个DNA测序引物结合位点掺入到反应产物中,或者可以将这些位点在反应产物从微流体装置输出之后掺入到其中。在具体实施方案中,DNA测序引物结合位点可以通过标签化添加,标签化为一种熟知的基于转座酶的体外鸟枪方法(shotgun method),其中待测序的DNA同时片段化并用转座子末端标签化以引入促进随后测序的序列。

  因此,在一些实施方案中,该方法包括使反应产物经历DNA测序,例如,Sanger测序、下一代测序(例如,桥式测序)或第三代测序。在此类实施方案的变化形式中,从DNA测序获得的序列可以基于一种或两种条形码被鉴定为来源于特定捕获位点。

  如下文更详细地讨论的,来自矩阵型微流体装置的特定行或列的反应产物可以以汇集物输出。反应产物的任何随后表征,诸如DNA测序,都可以对单独的输出的汇集物进行。然而,也可以考虑在进一步表征之前可以汇集汇集物本身。在这种情况下,来自微流体装置中每一个分开的捕获位点的反应产物通常为不同的,这是容易实现的,例如通过使用两种条形码序列来编码微流体装置中捕获位点的行和列位置。

  引物组合

  可以将以上描述的任何引物或寡核苷酸组合以形成引物组合。通常,引物组合包括在诸如本文描述的那些方法中一起使用的2种、3种、4种或更多种引物或寡核苷酸。

  例如,用于在由RNA产生cDNA(第一链合成)中使用的引物组合可以包含:

  (a)逆转录(RT)引物,所述逆转录(RT)引物包含锚序列、所述锚序列5’的聚-dT序列、所述聚-dT序列5’的第一条形码、和所述第一条形码序列5’的第一接头;以及

  (b)5’寡核苷酸,所述5’寡核苷酸包含聚-riboG序列、所述聚-riboG序列5’的第二条形码、和所述第二条形码5’的第二接头。

  在某些实施方案中,这些引物的一种或两种可以包括UMI。

  用于在扩增DNA中使用的说明性引物组合可以包含第一和第二扩增引物,所述第一和第二扩增引物各自包括:引物序列;条形码,所述条形码存在于引物序列的5’,其中每一个引物中的条形码为不同的;和接头,所述接头存在于条形码的5’;其中一种或两种引物还包含存在于引物序列的5’和接头的3’的UMI。

  这些引物组合还可以包含与接头退火的一种或更多种接头引物,例如,以促进无偏倚扩增。在一些实施方案中,组合包含两种接头引物:5’接头引物和不同的3’接头引物。在需要使用以上引物组合产生的cDNA或扩增子的预扩增的一些实施方案中,一种或两种接头引物可以用于进行该预扩增。

  意图用于在制备用于桥式测序的DNA测序模板中使用的引物组合可以任选地包括包含对所述3’接头引物或其互补序列特异性的部分的引物和/或包含对所述5’接头引物或其互补序列特异性的部分的引物,其中所述引物另外包含可用于桥式测序中簇产生的流动池序列。流动池序列通常在接头特异性部分的5’。

  矩阵型微流体装置

  在某些实施方案中,可用于以上描述的方法中的矩阵型微流体装置包括被布置于R行和C列的矩阵中的捕获位点,其中R和C为大于1的整数。每一个捕获位点可以包含捕获特征,所述捕获特征能够捕获仅一个细胞,或者在细胞将被以组分析时,不多于对于每一组细胞所期望数目的细胞。在将细胞分配至所述捕获位点之后,所述捕获位点能够彼此流体隔离。装置还包含一组R个第一输入管线和一组C个第二输入管线,所述第一输入管线被配置为递送第一试剂以捕获特定行中的位点,所述第二输入管线被配置为递送第二试剂以捕获特定列中的位点,其中该递送与递送第一试剂分开。将这种类型的说明性装置示意性示于图1A中。图1B阐释了将R种不同条形码通过R个不同的第一输入管线递送至捕获位点。图1C阐释了将C种不同条形码通过C个不同的输入管线递送至捕获位点。在特定实施方案中,所有条形码将为独特的,即,与提供至装置的每一种其他条形码不同。图1D阐释了,在进行反应之后,可以以汇集物收集每一列的反应产物,例如,通过将收获流体施加至C个第二输入管线以将反应产物推出输入管线的一个末端的出口。(本领域技术人员容易理解,反应产物可以可选地以不同的实施以相同的方式按行收获)。图2示出了在图1中示意性示出的装置的照片。

  在某些实施方案中,矩阵型微流体装置允许分析单个细胞或细胞(例如多达(并包括)1000个)的组。在每一个捕获位点捕获或隔离一个或更多个细胞之后,细胞可以为完整的或部分或完全破坏的(例如,透化或裂解)。在后一种情况下,该装置被配置为提供该功能(参见,例如,图11)。在一些实施方案中,该装置在至少一个表面上为透明的,以允许成像以使细胞数目或表型可视化(其中细胞或其内容物已经与光学可检测的标记物反应)。在一些实施方案中,该装置被配置为进行“X-Y”组合条形码化,由此反应产物可以以一个或更多个汇集物(其本身可以被汇集)输出,并进一步以多重复用方式分析(例如,通过扩增),随后是“解多重复用”(“demux”),以将特定的反应产物分配至特定捕获位点。这种类型的条形码阐释于图1中,其示出了递送至每一列的同一组3’条形码(在图1B中的“3’BC”)和递送至每一行的同一组5’条形码(在图1C中的“5’BC”)。

  图3示出了适用于在此类装置中捕获单个细胞的说明性捕获特征的显微照片,以及用于将条形码按行和列添加到来自捕获的细胞的反应产物的方法的说明性流程图。图4A示出了一系列越来越小型化的捕获特征,这促进每个芯片分析更多的细胞。图4B示出了行和列中捕获特征的布置,以及用于将细胞分配至捕获特征的通道。图4C示出了小型化捕获特征的显微照片。

  在图4D中的表报告了两种不同捕获位点设计的细胞占据数据,其中顶表示出了小型化特征的结果,且底表示出了具有不同的顶槽与底槽高度比的双槽捕获特征的结果。在图4D中的表中的第一列报告了没有细胞的捕获特征的数目,且第二列报告了仅具有1个细胞的捕获特征的数目。图5示出了包括用于将细胞分配至捕获特征的通道的双槽捕获特征的示意图。该几何结构允许每单位面积更多的捕获位点。图6A示出了在图6B中及在图6C和图6D中的显微照片中示意性地阐释的此类装置中主流和旁流的流动阻力。图7阐释了在图A中和在图B中的显微照片中示意性地示出的此类装置中的旁路蠕动泵送的活化。图8A和图8B阐释了在图A中和在图B中的显微照片中示意性地关闭此类装置中的主流输出。图8C中的表报告了双槽捕获特征设计的细胞占据数据,其中在表的列1中为没有细胞的捕获特征的数目以及在表的列2中为仅具有1个细胞的捕获特征的数目。

  图9示出了具有四个室的说明性单位捕获位点,每一个室对于试剂是可用的。捕获特征位于这四个室之一。在使用中,可以将第一试剂从底部至顶部(紫色箭头)装载到捕获位点,并且可以将第二试剂从左至右(绿色箭头)装载到捕获位点。

  在多种实施方案中,具有从约97个至约1000个分开的捕获位点,特别地从约97个至约9000个捕获位点,更特别地从约97个至约8000个捕获并且甚至更特别地约97个至约7500个捕获位点的微流体装置用于进行本文描述的一种或更多种方法。在一些实施方案中,微流体装置可以具有大于100个、大于200个、大于300个、大于400个、大于500个、大于600个、大于700个、大于800个、大于900个、或大于1000个捕获位点。

  在一些实施方案中,捕获位点具有范围为从约2nL至约500nL的一个或更多个反应室。反应室体积越低,任何靶核酸的有效浓度越高。在某些实施方案中,反应室为从约2nL至约50nL,优选地2nL至约25nL,更优选地从约4nL至约15nL。在一些实施方案中,反应室体积为5nL、6nL、7nL、8nL、9nL、10nL、11nL或12nL,或落入由任何这些值限定的任何范围内。

  符合本文描述规格的微流体装置以及采用它们进行所公开方法的系统可以基于本文和现有的共有专利公布中的指导进行设计和制造,所述专利公布诸如Anderson等2013年5月12日公布的美国专利公布第2013/0323732号(在此通过引用并入其对于单个细胞分析方法和系统的描述)。例如,从Fluidigm Corporation(South San Francisco,CA)可得的C1TM单细胞自动制备系统提供了对来自IFCTM中单个细胞的核酸多重分离、裂解和反应的台式(bench-top)自动化。特别地,C1单细胞自动制备阵列TMIFC为一种矩阵型微流体装置,其促进捕获和高度并行地制备96个单独细胞。当适当地使用时,芯片内的每一个捕获位点捕获一个单细胞。有时,一个位点可以捕获零个、两个或更多个细胞;然而,C1芯片的每一个捕获位点中捕获的细胞的准确数目容易高置信度地验证,并且容易地记录在显微照片中。在某些实施方案中,细胞被捕获并且在每一个分开的反应体积中进行条形码化以产生条形码化的核酸分子,这最方便地通过DNA测序分析,无论是Sanger测序、下一代测序还是第三代测序,任选地在预扩增之后进行。

  试剂盒

  根据本发明的试剂盒可以包含对于实践本文描述的一种或更多种方法有用的一种或更多种试剂。试剂盒通常包含具有一个或更多个容器的包装,所述包装容纳试剂作为一种或更多种分开的组合物,或任选地,在试剂的相容性将允许时,作为混合物。试剂盒还可以包含从使用者角度可期望的其他物质,诸如缓冲液、稀释剂、标准和/或可用于样品处理、洗涤、或执行测定的任何其他步骤中的任何其他物质。在具体实施方案中,试剂盒包含以上讨论的一种或更多种矩阵型微流体装置和/或引物/寡核苷酸或其组合。

  应理解,本文所描述的实施例和实施方案仅用于说明性的目的,且根据其的各种修改或改变对本领域技术人员将是暗示的,并被包括在本申请的精神和范围及所附的权利要求的范围内。

  另外,本文引用的所有其他出版物、专利和专利申请在此通过引用以其整体出于所有目的并入本文。

  实施例

  实施例1:高通量(HT)IFCTM

  用于高通量(HT)IFCTM的多种设计示于附图中。HT IFCTM的一个方面为它包含修改的(小型化)捕获特征,该捕获特征能够在与正常IFCTM相同的面积中实现8倍数目的捕获位点。

  HT IFCTM的另一个方面为它能够实现条形码的多重复用,并且这与诸如下文描述的伴随化学组合允许HT IFCTM超出C1TM系统目前的96个单细胞限制。具体地,HT IFCTM可以用多达两个输入单独寻址每一个室,允许将至少两种不同的条形码以离散液体添加物(additions)分开添加至单个细胞中。

  实施例2:用于转录物组分析的HT IFCTM的伴随化学

  能够在HT IFCTM上实现条形码化和细胞解多重复用的化学可以包括一组修饰的寡核苷酸,所述修饰的寡核苷酸与以下一起使用允许单细胞转录物组鉴定(用于信使[聚-A]RNA)和转录物的3’末端计数:常规、商购可得的逆转录酶(MuMLV Rnase H活性突变体)和常规Taq聚合酶以及Nextera XTTM试剂盒。该组可以包括以下的一个或更多个(参见图10,其中数字相应于下文给出的寡核苷酸编号):

  1.寡核苷酸(RT引物,在HT IFCTM的上下文中称为‘行’条形码),所述寡核苷酸针对mRNA转录物的3’末端,最少包含2-核苷酸锚序列、聚-dT序列(18-30dT)、4-6个核苷酸之间的室鉴定条形码、用于单分子鉴定的5-6个核苷酸的可选的随机序列(UMI)、以及用于在标签化之后无偏倚扩增和3’末端富集的接头序列。

  2.寡核苷酸,所述寡核苷酸允许从转录物的5’末端和用于无偏倚扩增的接头后加物(add-on)完成cDNA分子。该寡核苷酸包含任选的4-5-核苷酸条形码、以及任选的用于单分子鉴定的5核苷酸随机序列(UMI)以及在5’末端扩增的接头序列。

  3.寡核苷酸,所述寡核苷酸促进附加至cDNA第一链的任一末端的接头的预扩增。

  4.寡核苷酸(簇2),所述寡核苷酸对3’末端接头为特异性的,所述3’末端接头允许在标签化之后富集转录物的3’末端,在添加流动池序列期间使用。还可以使用针对5’接头的任选的寡核苷酸以富集转录物的5’末端。

  一起使用的HT IFCTM和寡核苷酸允许输出被针对单独细胞条形码化(逐行)的大量cDNA物质(按照输出的汇集物被条形码化),所述cDNA物质然后可以以汇集物制备用于在第二代测序平台或以其他方式分析。在本文阐释的版本中,与最佳目前可用通量相比,HT IFCTM加伴随化学将对单芯片可以查询的细胞数目增加了多于8倍,且同时将文库制备反应的数目从芯片外(off-chip)潜在的800个单个反应显著降低至仅20个。

《用于高通量研究的单个细胞核酸.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)