欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 晶体生长> 用于在半导体晶圆的正面上沉积外延层的方法和实施该方法的装置独创技术17390字

用于在半导体晶圆的正面上沉积外延层的方法和实施该方法的装置

2021-02-01 14:02:46

用于在半导体晶圆的正面上沉积外延层的方法和实施该方法的装置

  技术领域

  本发明涉及一种用于在由单晶材料构成的半导体晶圆的正面上沉积外延层的方法,在此过程中,所提供的半导体晶圆被设置在基座上并借助于热辐射被加热至沉积温度,并且在半导体晶圆的正面上方引导沉积气体。本发明还涉及一种用于在由单晶材料构成的半导体晶圆的正面上沉积外延层的装置。

  背景技术

  通常在CVD反应器中,通常在单晶圆反应器中,通过CVD(化学气相沉积)在半导体晶圆的正面上进行外延层的沉积。举例来说,将提及US 2014/0251 208 A1,其中描述了这种CVD反应器。单晶圆反应器在上盖和下盖(圆顶)之间提供反应室,在该反应室中,基座通过基座支撑销上的基座承载轴的基座承载臂被保持。基座和放置在其上的半导体晶圆被设置在盖上方和下方的灯阵列借助于热辐射而被加热,同时沉积气体在面对上盖的半导体晶圆的正面上方被引导。

  US 2008/0118712 A1描述了一种基座,其包括基座环和基座基底。基座环具有用于将半导体晶圆放置在半导体晶圆的后面的边缘区域中的凸缘。为了在半导体晶圆的正面上沉积层,将基座环放置在基座基底上。

  US 2007/0227441 A1引起对由硅构成的外延涂覆的半导体晶圆的边缘区域中的厚度的周期性波动的关注。原因是外延层生长的生长速率不同。不同的生长速率与半导体晶圆的正面的晶体取向有关。半导体晶圆的正面是在其上沉积外延层的半导体晶圆的侧表面。为了使外延层的厚度在边缘区域中均匀,US 2007/0227441 A1提出了以厚度波动的周期来改变基座的结构。

  为了相同的目标,US 2015/0184314 A1提出限制半导体晶圆的边缘区域的宽度。

  所提到的建议要求对所使用的基座或半导体晶圆的边缘区域的形状进行修改。

  发明内容

  本发明的目的是改进在边缘区域中具有沉积的外延层的半导体晶圆的平坦度,而不必为此目的而改变基座或半导体晶圆的边缘区域的形状。

  该目的借助于一种用于在由单晶材料构成的半导体晶圆的正面上沉积外延层的方法来实现,该方法包括:

  提供半导体晶圆;

  将该半导体晶圆设置在基座上;

  借助于导向半导体晶圆的正面和后面的热辐射将该半导体晶圆加热到沉积温度;

  在该半导体晶圆的正面上方引导沉积气体;和

  选择性地减小导向该半导体晶圆的后面的一部分热辐射的强度,其结果是在该半导体晶圆的边缘处的第一局部区域与相邻的第二局部区域相比,被更弱地加热,由于单晶材料的取向,在给定半导体晶圆的均匀温度的情况下,在第一局部区域中外延层的生长速率比在相邻的第二局部区域中的更大。

  本发明还涉及一种用于在由单晶材料构成的半导体晶圆的正面上沉积外延层的装置,该装置包括:

  基座;

  用于保持和旋转该基座的设备,该基座具有基座承载轴和基座承载臂;和

  由该基座承载臂保持的环,该环具有面向内的突起部,该突起部选择性地减小通过它们的热辐射的强度,其结果是在被放置于该基座上的该半导体晶圆的边缘处的第一局部区域与相邻的第二局部区域相比,被更弱地加热,由于单晶材料的取向,在给定半导体晶圆的均匀温度的情况下,在第一局部区域中外延层的生长速率比在相邻的第二局部区域中的更大。

  半导体晶圆或其包括半导体晶圆的表面的至少一部分是单晶的,并且优选地由硅、锗或这些元素的混合物构成。半导体晶圆可以完全由所提及的材料之一构成。然而,它也可以是SOI晶圆(绝缘体上的硅),结合的半导体晶圆或已经被一个或多个外延层覆盖的衬底晶圆。外延层优选地由硅、锗或这些元素的混合物构成,并且如果合适的话包含电活性掺杂剂。

  可以从根据FZ方法(浮区)或CZ方法已结晶的单晶切片半导体晶圆。CZ方法包括将籽晶浸入包含在坩埚中的熔体中,并从熔体中提起籽晶和在其上结晶的单晶。

  半导体晶圆具有至少200mm的直径,优选至少300mm的直径。半导体晶圆的正面优选地为<100>取向或<110>取向。

  在正面的<100>取向的情况下,可以将半导体晶圆的正面的边缘区域在每种情况下再分为四个相互交替的第一和第二局部区域。在四个第一局部区域中,外延层的生长速率大于在边缘区域的四个第二局部区域中的生长速率。第一局部区域的中心各具有相对于半导体晶圆的圆周的角度位置θ。如果取向切口识别出垂直于半导体晶圆正面的<100>取向的<110>方向,并且如果将270°的角度位置θ分配给该方向,则四个第一局部区域的中心具有与垂直于半导体晶圆的正面的<100>取向的<110>方向的角度位置相对应的0°、90°、180°和270°的角度位置θ。

  在正面的<100>取向的情况下,可以将半导体晶圆的正面的边缘区域在每种情况下再分为两个相互交替的局部区域。在两个第一局部区域中,在半导体晶圆的正面上的外延层的生长速率大于在边缘区域的两个第二局部区域中的生长速率。如果取向切口识别出垂直于半导体晶圆正面的<100>取向的<110>方向,并且如果将270°的角度位置θ分配给该方向,则两个第一局部区域的中心具有与垂直于半导体晶圆的正面的<110>取向的<110>方向的角度位置相对应的90°和270°的角度位置θ。

  在半导体晶圆的正面上沉积外延层期间,半导体晶圆位于基座的凸缘上。基座可以整体地构成,或者优选地由基座环和基座基底构成。半导体晶圆以取向的方式被放置在基座上,也就是说,其取向切口具有在基座的凸缘上的限定的位置。半导体晶圆以这样的方式放置在基座上,即,半导体晶圆的边缘处的第一局部区域与第二局部区域相比被更低强度地加热。温度越高,外延层的生长速率越大,因此在第一局部区域中比在第二局部区域中低。然而,它不仅取决于温度,而且取决于晶格的取向。另外,由于晶格的取向,因为在第一局部区域中外延层的生长速率大于在第二局部区域中的生长速率,总体上实现了在第一和第二局部区域中外延层的生长速率的匹配。换句话说,沉积在半导体晶圆的正面上的外延层的厚度在半导体晶圆的边缘区域中变得更均匀,这在诸如ESFQR的特征图中变得很明显,该特征图描述了边缘区域中已涂覆或未涂覆的半导体晶圆的平坦度。

  根据本发明,第一局部区域被较低强度地加热,因为有选择地减小了导向半导体晶圆后面的一部分热辐射的强度,特别是对半导体晶圆的第一局部区域的加热至关重要的一部分热辐射的强度。为此目的,环的面向内的突起部位于热辐射的射束路径中。突起部完全地或部分地由在光谱的IR范围内具有低透射率的材料构成,优选地由不透明的石英玻璃构成。相对于10mm的材料厚度,在所述范围内透射率优选不大于20%,特别优选不大于5%。突起部的厚度优选不小于5mm且不大于10mm。突起部各具有在圆周方向上的不小于15°且不大于25°的宽度,优选地20°的宽度。它们从环的内圆周径向地向内延伸优选地不小于20mm且不大于30mm的长度。防止上述部分的热辐射的一部分穿过突起部。该遮蔽效果是足够的,以便半导体晶圆在第一局部区域中被以期望的方式较低强度地加热。由不透明的石英玻璃构成的合适的材料例如由Heraeus以商品名100来提供。

  具有面向内的突起部的环优选地被配置成,其可以被插入用于涂覆单个半导体晶圆的商业上常规的CVD反应器内,而不必预先对所述反应器进行结构上的修改。在根据本发明的装置中,该环由CVD反应器的基座承载臂保持,并且为此目的具有孔,基座支撑销可以穿过该孔插入。因此,根据本发明的装置与已知实施例的CVD反应器之间的区别在于,所描述的环被另外设置在基座的下方,从而具体地,环的突起部与放置在基座上的半导体晶圆的边缘处的第一局部区域呈现相对于彼此的相对位置,该相对位置使得所描述的遮蔽效果能够发生。在插入基座支撑销之后,突起部的位置被固定,以及由第一晶体区域必须采用的位置也被固定,因为这于是产生根据几何光学器件的规则的结果。在该意义上,半导体晶圆以限定的方式被放置在基座上。

  下面参考附图更详细地解释本发明。

  附图说明

  图1是表示现有技术的图示,其示出了基座基底、基座环和半导体晶圆的相对布置。

  图2以平面图示出了具有<100>取向的半导体晶圆,并且图3示出了具有<110>取向的半导体晶圆。

  图4以截面图示出了根据本发明的装置。

  图5、图6和图7在每种情况下以平面图示出了作为根据本发明的装置的特征的环。

  图8和图9各示出了在距半导体晶圆的边缘1mm的距离处外延涂覆的半导体晶圆的厚度与涂覆的半导体晶圆的平均厚度之间的差Diff,该差Diff作为圆周位置CP的函数,其中外延层以传统方式(图8)或以根据本发明的方式(图9)被沉积。

  附图标记列表

  1 基座

  2 基座环

  3 基座基底

  4 凸缘

  5 半导体晶圆

  6 取向切口

  7 基座承载轴

  8 基座承载臂

  9 环

  10 基座支撑销

  11 孔

  12 晶圆提升轴

  13 晶圆提升销

  14 突起部

  15 腹板

  16 环段

  17 突起部的内边缘。

  具体实施方式

  根据图1的布置包括基座基底3和具有凸缘4的基座环2。可以将半导体晶圆5放置在半导体晶圆的后面的边缘区域中的凸缘4上。基座基底3和基座环2形成有两个部分的基座1。这对于本发明而言并不重要。不用说,根据本发明也可以使用整体式基座。

  基座3优选地由石墨毡或由涂覆有碳化硅的石墨毡或由涂覆有碳化硅的石墨或由碳化硅构成;基座环2优选地由碳化硅或由涂覆有碳化硅的一些其他材料构成。其他材料优选是石墨或硅。基座环2具有内径和外径。内径小于并且外径大于半导体晶圆5的直径。基座环2的凸缘4从基座环2的内边缘延伸直至增加基座环2的高度的台阶部。凸缘4优选地被以从台阶部向内下降的方式成形。

  图2示出了具有取向切口6的半导体晶圆5。半导体晶圆5具有<100>取向。取向切口6标记四个<110>晶体方向之一,该四个<110>晶体方向以90°的间隔分布在半导体晶圆的周围,指向半导体晶圆的边缘区域中的平面,在这些平面上外延层以相对较高的速率生长。因此,虚线箭头指向第一局部区域的中心,其中由于单晶材料的取向,在给定半导体晶圆的均匀温度的情况下,外延层的生长速率大于相邻第二局部区域的生长速率。在取向切口的角度位置为270°的情况下,第一局部区域的中心具有角度位置0°、90°、180°和270°。

  图3示出了具有<110>取向的半导体晶圆5的取向特征。取向切口6标记两个<110>晶体方向之一,该两个<110>晶体方向以180°的距离分布在半导体晶圆的周围,指示半导体晶圆的边缘区域中的平面,在这些平面上外延层以相对较高的速率生长。因此,虚线箭头指向第一局部区域的中心,由于单晶材料的取向,在给定半导体晶圆的均匀温度的情况下,在第一局部区域中外延层的生长速率大于在相邻第二局部区域中的生长速率。在取向切口的角度位置为270°的情况下,第一局部区域的中心具有角度位置90°和270°。

  根据本发明的装置(图4),除了包括基座1之外,还包括用于保持和旋转基座1的设备,该设备具有基座承载轴7和基座承载臂8。另外,用于保持和旋转基座1的设备可以包括晶圆提升轴12和晶圆提升销13。该装置的主要特征是环9,该环9由基座承载臂8保持并布置在基座1下方,而没有与基座1直接接触。环9由基座承载臂8保持,使得其不能沿其圆周方向移动。优选地,基座支撑销10位于基座承载臂8上,所述销穿过环9的孔11插入。环9的上表面和基座1的下表面之间的距离优选地不小于5mm且不大于10mm。优选地,环9的突起部14的内边缘17(图5、图6和图7)位于径向位置,该径向位置与环9的中心Z的距离不小于140mm,优选地不小于145mm,特别优选地148mm至150mm。

  图5以平面图示出了环9,在所示的实施方案中,环9具有孔11和四个面向内的突起部14,这些突起部被布置成以90°的距离分布在圆周上。该实施方案适用于根据图4的装置,以便在其中根据本发明,在具有<100>取向的半导体晶圆的正面上沉积外延层。优选地,环9由石英玻璃构成,而突出部14由在光谱的IR范围中具有低透射率的材料构成。在所述范围中,相对于10mm的材料厚度,突起部14的透射率优选地不大于20%,特别优选地不大于5%。突起部14优选地由不透明的石英玻璃构成。

  图6以平面图示出了环9,在所示的实施方案中,环9具有孔11和两个面向内的突起部14,这些突起部被布置成以180°的距离分布在圆周上。该实施方案适用于根据图4的装置,以便在其中根据本发明,在具有<100>取向的半导体晶圆的正面上沉积外延层。优选地,环9由石英玻璃构成,而突出部14由在光谱的IR范围中具有低透射率的材料构成。在所述范围中,相对于10mm的材料厚度,突起部14的透射率优选地不大于20%,特别优选地不大于5%。突起部14优选地由不透明的石英玻璃构成。

  图7以平面图示出了环9,在所示的实施方案中,环9具有孔11和四个面向内的突起部14,这些突起部被布置成以90°的距离分布在圆周上。该实施方案适用于根据图4的装置,以便在其中根据本发明,在具有<100>取向的半导体晶圆的正面上沉积外延层。在所示的实施方案中,突起部14是T形的,并且每个包括腹板15和环段16,腹板15具有优选不小于8mm且不大于18mm的径向长度。环段16具有径向长度和在圆周方向上的宽度。环段16的径向长度优选为不小于1.5mm且不大于8mm,特别优选为不小于3mm且不大于8mm。以开口角度α表示,该宽度优选为不小于15°且不大于25°,特别优选为20°。优选地,环9和腹板15由石英玻璃构成,而环段由在光谱的IR范围中具有低透射率的材料构成。在所述范围中,相对于10mm的材料厚度,环段16的透射率优选地不大于20%,特别优选地不大于5%。环段16优选地由不透明的石英玻璃构成。

  根据本发明的示范性实施例的描述

  在单晶圆反应器中,由具有300mm的直径和正面的<100>取向的单晶硅构成的半导体晶圆被涂覆有由硅构成的外延层。在根据图4的装置中,以放在根据图1的基座上的方式涂覆半导体晶圆的一部分(比较例),但是没有设置环9。以相同的方式涂覆半导体晶圆的另一部分(示例),但是存在根据图5的实施例中的环9,根据图4设置该环。半导体晶圆的和环的相对位置被选择成,在穿过环的突起部时热辐射的强度被减弱,因此在半导体晶圆的第一局部区域中以有针对性的方式降低了外延层的生长速率。之后,在每种情况下确定在距边缘1mm的距离处的涂覆的半导体晶圆的厚度与相应的半导体晶圆的平均厚度之间的差。在根据本发明制造的半导体晶圆的情况下,该差比在传统制造的半导体晶圆的情况(图8)下显著更小(图9)。

  示例性实施方案的以上描述将被示例性地理解。因此,进行的公开首先使本领域技术人员能够理解本发明及其相关的优点,其次包括对所描述的结构和方法的改变和修改,这对本领域技术人员的理解也是显而易见的。因此,所有这样的改变和修改以及等同方式都旨在被权利要求的保护范围所覆盖。

《用于在半导体晶圆的正面上沉积外延层的方法和实施该方法的装置.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)