欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 一种基于二维材料改性微纳结构的疏水材料及其制备方法和应用独创技术10305字

一种基于二维材料改性微纳结构的疏水材料及其制备方法和应用

2021-02-17 17:34:31

一种基于二维材料改性微纳结构的疏水材料及其制备方法和应用

  技术领域

  本发明属于微纳结构功能化表面处理技术领域,具体涉及一种基于二维材料改性微纳结构的疏水材料及其制备方法和应用。

  背景技术

  疏水性或润湿性是固体表面的一项重要特性,疏水性表面在自清洁、防腐蚀、冷凝等方面有广阔的应用前景。近年来,受到荷叶、水黾和甲壳虫等多种疏水生物表面的启示,研究者们对疏水功能表面材料进行了大量的研究。一般来说,固体表面的润湿特性受固体表面张力和表面粗糙度两个因素影响,所以疏水表面的设计和制备可以有两种方法:第一是在固体表面修饰低表面能的物质,比如含氟聚合物或者含有疏水基团的硅烷,通过降低固体表面张力来提高表面疏水性;第二是在疏水材料表面构筑微纳结构,通过改变表面粗糙度来提高表面疏水性。

  液滴在微纳结构表面的疏水状态可分为Wenzel状态和Cassie状态两种。Wenzel状态描述的是液滴在微纳结构表面与凸起和凹陷部分完全浸润接触,而Cassie状态描述的是液滴在微纳结构表面只与凸起部分的固体表面接触,在凹陷部分实际与空气接触。Cassie状态必须满足以下三个条件:(1)微纳结构的凹陷部分预先没有液体存在;(2)凹陷的深度足够大,凹陷顶部的弯曲气液界面远离凹陷底部的气固界面;(3)凹陷上面的液体重力不大于凹陷顶部弯曲气液界面的拉普拉斯力。但是从热力学上分析,Cassie状态是亚稳态,而Wenzel状态才是稳定态。当上述条件因外部干扰作用而无法得到满足时,比如当凹陷深度较小,液滴重力较大,或者外部气压大于凹陷内部气压,气液界面必将逐渐下移与气固界面完全重合,液滴将从Cassie状态转变为Wenzel状态,致使表面疏水性减弱;或者当微纳结构表面作为冷凝壁面,蒸汽在凹陷内部冷凝成核,长大的液滴也处于Wenzel状态,甚至凹陷区域逐渐被全部填充形成液膜,直至表面疏水作用彻底失效。

  中国专利CN102366712B公开了一种利用低压强制Cassie态效应改变微孔膜润湿性的方法,但是该方法需要额外用功,并且只适用于微孔膜,对于非通孔型的块状固体微纳结构表面则无法使用该方法。因此,寻找一种能够普适性的防止微纳结构表面疏水性失效的方法具有重要的应用价值。

  发明内容

  本发明的目的在于提供一种基于二维材料改性微纳结构的疏水材料及其制备方法和应用。该疏水材料很好的维持液滴在微纳结构表面的Cassie疏水状态,避免液滴向Wenzel状态转变,从而维持疏水表面的长效疏水性能,制备工艺简单,可广泛用于疏水和超疏水表面,具有普适性。

  为了解决上述技术问题,本发明采用以下技术方案:

  一种基于二维材料改性微纳结构的疏水材料,包括表面具有微纳结构的疏水性基底材料,还包括具有原子级厚度的二维材料,所述二维材料位于所述微纳结构表面,直接与所述微纳结构的凸起部分相接触,在所述微纳结构的凹陷部分处于悬空状态。

  按上述方案,所述疏水性基底材料为具有疏水表面的塑料或金属、含氟聚合物、含疏水基团的硅烷、表面经过含氟聚合物或含疏水基团的硅烷修饰的固体材料。

  按上述方案,所述二维材料为石墨烯(Graphene)、二维过渡金属二硫化物或二维过渡金属碳/氮化物(MXene)。

  提供上述基于二维材料改性微纳结构的疏水材料的制备方法,具体为:向具有微纳结构的疏水性基底材料表面覆盖一层具有原子级厚度的二维材料,所述二维材料直接接触所述微纳结构的凸起部分,在所述微纳结构的凹陷部分处于悬空状态。

  按上述方案,所述微纳结构采用模板法、刻蚀法、沉积法或静电纺丝法工艺制备得到。

  按上述方案,向具有微纳结构的疏水性基底材料表面覆盖一层具有原子级厚度的二维材料的工艺方法为液相转移法,具体为:将带保护层的二维材料漂浮在液面上,然后用疏水性基底材料的微纳结构表面将带保护层的二维材料从二维材料一面捞起,使二维材料覆盖在微纳结构表面,最后去除保护层,即得基于二维材料改性微纳结构的疏水材料。

  按上述方案,所述疏水性基底材料为具有疏水表面的塑料或金属、含氟聚合物、含疏水基团的硅烷、表面经过含氟聚合物或含疏水基团的硅烷修饰的固体材料。

  按上述方案,所述二维材料为石墨烯(Graphene)、二维过渡金属二硫化物或二维过渡金属碳/氮化物(MXene)。

  提供一种上述基于二维材料改性微纳结构的疏水材料的应用,用于自清洁、强化冷凝换热或节能领域。

  本发明提供的基于二维材料改性微纳结构的疏水材料中,二维材料位于疏水性基底材料微纳结构表面,直接接触微纳结构的凸起部分,并在微纳结构的凹陷部分处于悬空状态,二维材料和微纳结构表面形成一层气膜。原子级厚度的二维材料对润湿性是透明的,即固体表面覆盖一层二维材料对润湿性没有明显改变,同时无缺陷的二维材料也具有很好不渗透性,即水分子无法从材料的一侧渗透到另一侧,所以二维材料既可以保持微纳结构的存在对液滴起到疏水性增强的作用,又可以避免外部水分进入微纳结构的凹陷内部,很好的维持液滴在微纳结构表面的Cassie状态,从而维持疏水材料表面的长效疏水性能。

  本发明的有益效果为:

  1.本发明的基于二维材料改性微纳结构的疏水材料,具有原子级厚度的二维材料位于疏水性基底材料的微纳结构表面,由于二维材料的支撑和阻隔作用,液滴难以进入微纳结构的凹陷内部,而二维材料因为只有原子级厚度,又不会影响疏水表面的润湿性,从而很好的维持液滴在微纳结构表面的Cassie疏水状态,避免液滴向Wenzel状态转变,可有效防止因微纳结构凹陷深度较小、液滴重力过大、外部气压大于凹陷内部气压或者冷凝成核等原因引起的疏水性失效,从而维持疏水材料表面的长效疏水性能,广泛应用于自清洁、强化冷凝换热或节能等领域。

  2.本发明提供的方法工艺简单,只需将二维材料覆盖在疏水性基底材料的微纳结构表面即可实现,操作方便,效率高。

  3.本发明提供的疏水材料和方法对具有微纳结构的疏水和超疏水表面同样适用。

  附图说明

  图1为本发明实施例的结构示意图,底层1为具有微纳结构的疏水性基底材料,顶层2为具有原子级厚度的二维材料。

  图2为本发明实施例1中微米阵列柱状结构的俯视示意图,图中白色区域为凹陷部分,灰色区域为凸起的柱状结构。

  图3是本发明实施例1得到的PDMS、SPMDS与G/SPDMS膜的接触角测试结果对比图。

  图4是本发明实施例2中SPDMS/Cu和G/SPDMS/Cu的冷凝效果测试图。

  具体实施方式

  以下结合附图与实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。

  实施例1

  本实施例中,选用聚二甲基硅氧烷(PDMS,polydimethylsiloxane)作为疏水性基底材料,选用单层石墨烯作为二维材料,具体步骤如下:

  1)采用模板法制备得到微米阵列柱状结构的PDMS膜(SPDMS膜)如图2所示。SPDMS膜的厚度为100~150μm,凸起的柱状结构形状为正六边形,正六边形的外接圆直径为20μm,两个相邻柱状结构之间的凹槽宽度为5μm,柱状结构的高度(即凹槽深度)为12μm,柱状结构阵列区域面积为1cm×1cm;

  2)将步骤1)所得的SPDMS膜表面依次用丙酮、乙醇和去离子水清洗干净;

  3)将背面涂有PMMA的石墨烯膜(PMMA/G膜)释放漂浮在去离子水表面,石墨烯侧朝下接触水面,所述PMMA/G膜的横向尺寸为1cm×1cm,所述石墨烯为单层石墨烯;

  4)用步骤2)得到的SPDMS膜从石墨烯一侧捞取步骤3)得到的PMMA/G膜,使PMMA/G膜完全覆盖SPDMS膜上的柱状结构区域(面积也为1cm×1cm),得到PMMA/G/SPDMS膜;

  5)将步骤4)的PMMA/G/SPDMS膜自然晾干表面水分后,置于50~70℃烘箱中30~60min烘干;

  6)将步骤5)烘干的PMMA/G/SPDMS膜置于丙酮中溶解表面的PMMA,并清洗干净表面残留,得到干净的G/SPDMS膜;

  将无微米阵列柱状结构的PDMS膜和上述步骤1)中的SPDMS膜、步骤6)中的G/SPDMS膜分别进行接触角测试的结果如图3所示,图中显示:左边是无微米阵列柱状结构的PDMS膜,接触角为116°;中间是上述步骤1)中的SPDMS膜,接触角为137°;右边是步骤6)中的G/SPDMS膜,接触角为140.5°。

  图3结果表明,微纳结构可以增强疏水材料表面的疏水性,覆盖上一层石墨烯可以保持微纳结构表面的疏水性。

  实施例2

  与实施例1基本相同,不同之处于:SPDMS膜上的图案化区域为1×3cm,PMMA/石墨烯膜的横向尺寸为1×3cm。

  将SPDMS膜和G/SPDMS膜分别贴于铜片表面得到SPDMS/Cu和G/SPMDS/Cu。将所述SPDMS/Cu和G/SPDMS/Cu分别进行冷凝测试结果如图4所示。其中蒸汽温度为60℃,冷凝表面采用水冷控制在20℃,实验进行5h,G/SPDMS/Cu平均冷凝速率相对于SPDMS/Cu提升了60%。

  图4结果显示:覆盖石墨烯的SPDMS膜(G/SPDMS)可以有效保持表面的疏水性,形成滴状冷凝,液滴更容易滑落,达到强化传热的效果,从而提升冷凝速率。

《一种基于二维材料改性微纳结构的疏水材料及其制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)