欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 镍锰酸锂复合材料、其制备方法及锂离子电池独创技术23113字

镍锰酸锂复合材料、其制备方法及锂离子电池

2021-03-02 12:43:40

镍锰酸锂复合材料、其制备方法及锂离子电池

  技术领域

  本发明涉及锂离子电池领域,具体而言,涉及一种镍锰酸锂复合材料、其制备方法及锂离子电池。

  背景技术

  正极材料是制约锂离子电池快速发展的三大关键材料之一。通常钴酸锂正极材料的工作电压较高,倍率性能较好,但其较低的实际容量极大地限制了钴酸锂正极材料的应用。橄榄石型磷酸铁锂正极材料具有结构稳定、循环性能好、原料价格低廉的优点,但理论容量较低。三元层状正极材料(NCM)充分结合了锰酸锂、钴酸锂和镍酸锂三者的优点,同时具备了较高的放电比容量、较好的循环性能以及较低的成本等优点。在当前动力市场上,三元正极材料已经商业化,例如NCM523、NCM622、NCM811等三元正极材料,在一定程度上满足了动力汽车的需求。但是,钴作为战略金属,其昂贵的价格使得三元正极材料NCM的成本较高,同时钴资源有限,市场行情波动较大。因此,开发无钴正极材料是非常有必要的。

  在合成正极材料时,材料表面残余碱含量较高,容易吸水,从而使得电池在充放电过程中易分解,同时会发生歧化反应,导致电池循环性能较低;同时,在电池制备过程中,正极材料匀浆会受到材料的pH影响,若正极材料pH高,浆料粘度不稳定,匀浆困难,从而导致电池加工性能变差。对于这一问题,目前最普遍的解决办法是对正极材料进行包覆,即在材料表面包覆一层均匀的纳米氧化物,但这种包覆方法基本很难在材料表面形成均匀包覆层,且包覆物与材料本身之间的结合力较弱,后续加工过程中极有可能使包覆物脱落,从而形不成有效的保护。

  鉴于上述问题的存在,有必要提供一种包覆层不易脱落,且电池循环性能较好的无钴正极材料。

  发明内容

  本发明的主要目的在于提供一种镍锰酸锂复合材料、其制备方法及锂离子电池,以解决现有的三元正极材料存在包覆层易脱落,导致离子电池的循环性能较差的问题。

  为了实现上述目的,本发明一方面提供了一种镍锰酸锂复合材料的制备方法,该制备方法包括:将纳米氧化物与镍锰前驱体进行第一煅烧过程,得到氧化物包覆的镍锰前驱体;及将氧化物包覆的镍锰前驱体与锂源材料进行第二煅烧过程,得到镍锰酸锂复合材料,且第一煅烧过程的温度低于第二煅烧过程的温度。

  进一步地,在进行第一煅烧过程之前,该制备方法还包括:使纳米氧化物与镍锰前驱体进行第一混合处理,得到第一混合物;优选地,第一混合处理过程在2000~3000rpm的转速下,混合10~20min;优选地,纳米氧化物选自氧化铝、氧化锆、氧化钛、氧化铌、氧化钨、氧化镧和氧化钼组成的组中的两种或多种;更优选地,纳米氧化物的粒度为300~700nm。

  进一步地,第一煅烧过程为程序升温过程;优选地,第一煅烧过程包括:在氧气气氛下,使第一煅烧反应体系的温度以3~5℃/min的速率升至第一目标温度,保温时间为4~6h,其中,第一目标温度为300~600℃;及将第一煅烧反应体系的温度降至室温,得到氧化物包覆的镍锰前驱体。

  进一步地,镍锰前驱体以NixMny(OH)2表示,其中0.50≤x≤0.92,0.50≤y≤0.8,且当纳米氧化物为氧化锆和氧化铝的混合物时,氧化锆、氧化铝和镍锰前驱体的重量比为(0.001~0.003):(0.001~0.003):1。

  进一步地,在进行第二煅烧过程之前,制备方法还包括:使氧化物包覆的镍锰前驱体与锂源材料进行第二混合处理,得到第二混合物;优选地,第二混合处理过程在2000~3000rpm的转速下,混合10~20min;优选地,制备方法还包括:将第一煅烧过程的产物体系进行筛分,得到氧化物包覆的镍锰前驱体,筛分过程的筛分孔径为300~400目。

  进一步地,第二煅烧过程为程序升温过程;优选地,第二煅烧过程包括:在氧气气氛下,使第二煅烧反应体系的温度以3~5℃/min的速率升至第二目标温度,保温时间为8~12h,其中,第二目标温度为910~950℃;将第二煅烧反应体系的温度降至室温,得到镍锰酸锂复合材料;优选地,第二煅烧过程还包括:将第二煅烧反应体系的温度降至室温后,得到第二煅烧产物;及将第二煅烧过程的产物进行超离心研磨和筛分,其中筛分过程中采用的筛分装置的孔径为300~400目,得到以单晶形式存在的镍锰酸锂复合材料。

  进一步地,锂源材料中Li元素摩尔数与氧化物包覆的镍锰前驱体中的Ni元素与Mn元素的摩尔数之和的比值为(1.00~1.05):1。

  本申请的另一方面还提供了一种镍锰酸锂复合材料,镍锰酸锂复合材料采用上述制备方法制得。

  进一步地,镍锰酸锂复合材料中,纳米氧化物的包覆量为0.1~0.3%。

  本申请的又一方面还提供了一种锂离子电池,包括正极材料,正极材料包括上述镍锰酸锂复合材料。

  应用本发明的技术方案,将纳米氧化物与镍锰前驱体在较低的温度下进行煅烧,能够使纳米氧化物发生熔融,并在镍锰前驱体表面形成较为致密的纳米氧化物包覆层,得到氧化物包覆的镍锰前驱体;然后在较高温度下,将氧化物包覆的镍锰前驱体与锂源材料进行第二次煅烧,能够使纳米氧化物、镍锰材料与锂元素进行更深程度的结合,从而解决纳米氧化物层易脱落的问题,进而能够大大提高镍锰酸锂复合材料的循环性能。

  附图说明

  构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

  图1示出了根据本发明实施例1制得的镍锰酸锂复合材料的扫描电镜图;

  图2示出了根据本发明的实施例1制得的镍锰酸锂复合材料的电化学性能;以及

  图3示出了根据采用现有方法的制得的镍锰酸锂复合材料的扫描电镜图。

  具体实施方式

  需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。

  正如背景技术所描述的,现有的三元正极材料存在包覆层易脱落,导致锂离子电池的循环性能较差的问题。为了解决上述技术问题,本申请提供了一种镍锰酸锂复合材料的制备方法,该制备方法包括:将纳米氧化物与镍锰前驱体进行第一煅烧过程,得到氧化物包覆的镍锰前驱体;及将氧化物包覆的镍锰前驱体与锂源材料进行第二煅烧过程,得到镍锰酸锂复合材料,且第一煅烧过程的温度低于第二煅烧过程的温度。

  将纳米氧化物与镍锰前驱体在较低的温度下进行煅烧,能够使纳米氧化物发生熔融,并在镍锰前驱体表面形成较为致密的纳米氧化物包覆层,得到氧化物包覆的镍锰前驱体;然后在较高温度下,将氧化物包覆的镍锰前驱体与锂源材料进行第二次煅烧,能够使纳米氧化物、镍锰材料与锂元素进行更深程度的结合,从而解决纳米氧化物层易脱落的问题,进而能够大大提高镍锰酸锂复合材料的循环性能。

  上述第一煅烧过程和第二煅烧过程均为有氧煅烧过程,可以采用本领域常用的装置和工艺实现。在一种优选的实施例中,在进行第一煅烧过程之前,该制备方法还包括:使纳米氧化物与镍锰前驱体进行第一混合处理,得到第一混合物。在进行煅烧之前,先将锂源材料和镍锰前驱体进行混合有利于提高两种原料的混合均匀性以及结合程度,并有利于提高氧化物包覆层的镍锰酸锂材料的均匀性。为了进一步提高两种原料的混合均匀性和结合程度,优选地,第一混合处理过程在2000~3000rpm的转速下,混合10~20min。

  采用纳米氧化物进行包覆能够提高氧化物包覆层的致密性,从而有利于提高其形成的电池的综合性能。在一种优选的实施例中,纳米氧化物包括但不限于氧化铝、氧化锆、氧化钛、氧化铌、氧化钨、氧化镧和氧化钼组成的组中的两种或多种。优选地,纳米氧化物的粒度为300~700nm。纳米氧化物的粒度包括但不限于上述范围,而纳米氧化物的粒度较大时,氧化物包覆层的致密性会变差,进而导致制得的正极材料的电化学性能较差;而粒度较小时,纳米氧化物的成本较高。

  上述锂源材料可以选用本领域常用的种类,比如氢氧化锂和/或碳酸锂。

  在一种优选的实施例中,第一煅烧过程为程序升温过程;优选地,第一煅烧过程包括:在氧气气氛下,使第一煅烧反应体系的温度以3~5℃/min的速率升至第一目标温度,保温时间为4~6h,其中,第一目标温度为300~600℃;将第一煅烧反应体系的温度降至室温,得到氧化物包覆的镍锰前驱体。第一煅烧过程的温度和处理时间包括但不限于上述范围,而将其限定在上述范围内有利于进一步提高镍锰酸锂表面包覆层的致密性和结合稳定性。

  采用上述制备方法制得的镍锰酸锂复合材料具有结构稳定和循环性能好等优点。在一种优选的实施例中,镍锰前驱体以NixMny(OH)2表示,其中0.50≤x≤0.92,0.50≤y≤0.08,且当纳米氧化物为氧化锆和氧化铝的混合物时,氧化锆、氧化铝和镍锰前驱体的重量比为(0.001~0.003):(0.001~0.003):1。将氧化锆、氧化铝和镍锰前驱体的重量比限定在上述范围内有利于进一步提高氧化包覆层的结构稳定性和结合力,从而有利于进一步提高后续形成的氧化物包覆镍锰酸锂材料的循环性能。

  通过第二煅烧过程能够提高氧化层与镍锰酸锂的结合程度,进而有利于提高正极材料的循环性能。在一种优选的实施例中,在进行第二煅烧过程之前,上述制备方法还包括:使氧化物包覆的镍锰前驱体与锂源材料进行第二混合处理,得到第二混合物;在进行煅烧之前,先将氧化物包覆的镍锰前驱体与锂源材料进行混合有利于提高两种原料的混合均匀性以及结合程度,并有利于提高氧化物包覆镍锰酸锂材料的稳定性。为了进一步提高两种原料的混合均匀性和结合程度,优选地,第二混合处理过程在2000~3000rpm的转速下,混合10~20min。

  在一种优选的实施例中,该制备方法还包括:将第一煅烧过程的产物体系进行筛分,得到氧化物包覆的镍锰前驱体,筛分过程的筛分孔径为300~400目(38~48μm)。在进行第二煅烧过程之前,先对第一煅烧过程的产物进行筛分过程,有利于提高后续镍锰酸锂复合材料的电化学性能的稳定性。

  在一种优选的实施例中,第二煅烧过程为程序升温过程;优选地,第二煅烧过程包括:在氧气气氛下,使第二煅烧反应体系的温度以3~5℃/min的速率升至第二目标温度,保温时间为8~12h,其中,第二目标温度为910~950℃;将第二煅烧反应体系的温度降至室温,得到镍锰酸锂复合材料。第二煅烧过程的温度和处理时间包括但不限于上述范围,而将其限定在上述范围内有利于进一步提高氧化物包覆镍锰酸锂材料的循环性能和电容量。

  本申请所指的氧气气氛是指氧气浓度大于99.99%,更优选地,氧气的流量为5~10L/min。

  在一种优选的实施例中,锂源材料中Li元素摩尔数与氧化物包覆的镍锰前驱体中的Ni元素与Mn元素的摩尔数之和的比值为(1.00~1.05):1。将锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值限定在上述范围内有利于进一步提高正极材料的能量密度和电容量及结构稳定性。

  在一种优选的实施例中,上述制备方法还包括:将第二煅烧反应体系的温度降至室温后,得到第二煅烧产物;及将第二煅烧产物进行超离心研磨和筛分,其中筛分过程中采用的筛分装置的孔径为300~400目(38~48μm),得到以单晶形式存在的镍锰酸锂复合材料。在初始的充放电过程中,上述单晶材料的表面可以和电解液充分接触反应,并在初始循环中形成稳定的正极固态电解质界面膜。而在后期循环的充放电的收缩膨胀不会像多晶形貌颗粒产生新的晶界界面,也不会发生副反应。因而上述镍锰酸锂单晶材料在应用过程中能够大大减少产气,并提高循环性能。

  本申请的另一方面提供了一种镍锰酸锂复合材料,镍锰酸锂复合材料采用上述制备方法制得。

  将纳米氧化物与镍锰前驱体在较低的温度下进行煅烧,能够使纳米氧化物发生熔融,并在镍锰前驱体表面形成较为致密的纳米氧化物包覆层,得到氧化物包覆的镍锰前驱体;然后在较高温度下,将氧化物包覆的镍锰前驱体与锂源材料进行第二次煅烧,能够使纳米氧化物、镍锰材料与锂元素进行更大程度的结合,从而解决纳米氧化物层易脱落的问题,进而能够大大提高以上述镍锰酸锂复合材料作为正极材料的电池的循环性能。

  在一种优选的实施例中,镍锰酸锂复合材料中,纳米氧化物的包覆量为0.1~0.3%。将纳米氧化物的包覆量限定在上述范围内能够使其与锂元素、镍元素及锰元素发挥更好的协同增效作用,从而能够使镍锰酸锂复合材料具有更加优异的电学性能,如长循环性能和高容量。

  本申请又一方面还提供了一种锂离子电池,包括正极材料,正极材料包括本申请提供的上述镍锰酸锂复合材料。

  采用上述方法制得的镍锰酸锂复合材料中氧化层不易脱落,将其作为正极材料制得锂离子电池能够大大提高电池的循环性能。

  以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。

  实施例1

  一种长循环镍锰酸锂NM单晶正极材料的合成方法,该合成方法包括:

  (1)氧化锆和氧化铝共包覆氢氧化镍锰NixMny(OH)2前驱体混料阶段

  将氧化锆、氧化铝和前驱体Ni0.75Mn0.25(OH)2按重量比0.002:0.002:1称好,并在高速混合设备中混合均匀,其中搅拌转速为2500rpm,混料时间为15min,得到氧化锆和氧化铝共包覆的氢氧化镍锰NixMny(OH)2前驱体。

  (2)氧化锆和氧化铝共包覆氢氧化镍锰NixMny(OH)2前驱体煅烧阶段:

  将上述基体材料置于在箱式气氛炉中,在氧气氛围(浓度大于99.99%,氧气流量:5-10L/min)中以4℃/min升温至500℃,保温时间5h,然后自然降到室温得到基体材料,将得到的基体材料进行过筛,筛网为400目,得到的材料记为NMZA。

  (3)镍锰酸锂单晶正极材料合成阶段:

  混料阶段:将氢氧化锂与基体材料NMZA以Li/Me=1.03(Me是指基体材料中Ni元素与Mn元素的摩尔数之和)在高速混合设备中进行混合均匀,其中搅拌转速为2000rpm,混料时间为10min,得到基体材料NMZA与氢氧化锂混合均匀的混合物。

  煅烧阶段:采用箱式气氛炉,在氧气氛围(浓度大于99.99%,氧气流量:5~10L/min)下以4℃/min的升温速率升温至950℃,保温时间10h,然后自然降到室温,得到的材料进行超离心研磨并过筛,筛网为400目,最终得到镍锰酸锂单晶正极材料NM,其中氧化铝的包覆量为0.2%,氧化锆的包覆量为0.2%。

  最终将得到的镍锰酸锂单晶正极材料NM与导电剂、粘结剂进行混合,混合均匀后进行涂布、辊压、裁片以及组装扣式电池,测试正极材料的电化学性能。

  采用Zeiss扫描电镜对镍锰酸锂复合材料进行检测,见图1;由图1可知,采用本申请所用包覆方法合成的镍锰酸锂单晶颗粒表面包覆层更均匀,包覆层厚度更均一,粒径在3.5μm左右。

  采用充放电测试方法测试镍锰酸锂复合材料的电化学性能,测试数据见表1,电化学性能曲线见图2。

  表1

  

  由表1和图2可知,材料首次放电容量为187.5mAh/g,首次放电库伦效率为86.0%,50周循环保持率为98.6%。从循环曲线可知,将镍锰酸锂复合材料作为正极材料使用,其循环性能较好,50周循环后基本无衰减。

  实施例2

  与实施例1的区别为:第一煅烧过程的温度为300℃,第二煅烧过程的温度为950℃。

  镍锰酸锂复合材料在50周的循环容量保持率为96.4%,放电容量为185.2Ah/g。

  实施例3

  与实施例1的区别为:第一煅烧过程的温度为600℃,第二煅烧过程的温度为910℃。

  镍锰酸锂复合材料在50周的循环容量保持率为95.1%,放电容量为183.8Ah/g。

  实施例4

  与实施例1的区别为:第一煅烧过程的温度为700℃。

  镍锰酸锂复合材料在50周的循环容量保持率为93.4%,放电容量为181.6Ah/g。

  实施例5

  与实施例1的区别为:第二煅烧过程的温度为970℃。

  镍锰酸锂复合材料在50周的循环容量保持率为92.6%,放电容量为180.5Ah/g。

  实施例6

  与实施例1的区别为:锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值为1:1。

  镍锰酸锂复合材料在50周的循环容量保持率为95.7%,放电容量为184.7Ah/g。

  实施例7

  与实施例1的区别为:锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值为1.05:1。

  镍锰酸锂复合材料在50周的循环容量保持率为97.2%,放电容量为186.3Ah/g。

  实施例8

  与实施例1的区别为:锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值为1.5:1。

  镍锰酸锂复合材料在50周的循环容量保持率为92.1%,放电容量为181.2Ah/g。

  实施例9

  与实施例1的区别为:第二煅烧处理后,不进行超离心研磨及筛分过程。

  镍锰酸锂复合材料在50周的循环容量保持率为94.5%,放电容量为184.1Ah/g。

  实施例10

  与实施例1的区别为:氧化铝的包覆量为0.5%,氧化锆的包覆量为0.5%。

  镍锰酸锂复合材料在50周的循环容量保持率为92.7%,放电容量为182.0Ah/g。

  实施例11

  与实施例1的区别为:氧化物包覆剂为氧化钛和氧化铌。

  镍锰酸锂复合材料在50周的循环容量保持率为95.8%,放电容量为186.4Ah/g。

  实施例12

  与实施例1的区别为:氧化物包覆剂为氧化铌和氧化钨。

  镍锰酸锂复合材料在50周的循环容量保持率为95.2%,放电容量为185.9Ah/g。

  实施例13

  与实施例1的区别为:氧化物包覆剂为氧化铝和氧化镧。

  镍锰酸锂复合材料在50周的循环容量保持率为94.7%,放电容量为184.8Ah/g。

  对比例1

  传统方法主要包括两部分内容:基体合成和基体包覆。主要工艺流程如下:

  (1)基体合成

  原料混合:将LiOH和前驱体Ni0.75Mn0.25(OH)2采用高速混合设备进行混合,混合时间:20min,转速:2000rpm。

  高温反应:将混合好的物料在氧气氛围(浓度大于99.99%,氧气流量:5~10L/min),在箱式气氛炉中930℃高温反应10h,自然降温后得到基体材料,将基体材料使用破碎设备进行粉碎,得到的粉末材料进行过筛,筛网为400目。

  (2)基体包覆

  干法包覆:该步骤为将包覆剂氧化锆和氧化铝均匀包覆到基体材料上,该过程具体步骤将氧化锆和氧化铝与基体材料按质量比为0.002:0.002:1一起加入到混合设备中进行混合,混合时间:20min,转速:2000rpm。

  退火处理:将包覆完的物料在500℃高温处理5h,高温处理氧气氛围(浓度范围在20-100%)进行,400目筛分得到最终产品镍锰酸锂单晶正极材料NM。

  所合成的镍锰酸锂单晶正极材料在50周的循环容量保持率为92.5%,放电容量为180.7Ah/g。

  从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:

  比较实施例1至13及对比例1可知,采用本申请提供的方法制得的镍锰酸锂复合材料具有更加优异的循环性能和电容量,同时由于不含钴元素使得正极材料还具有成本较低。

  比较实施例1至5可知,将第一烧结处理和第二烧结处理过程的温度限定在本申请优选的范围内有利于进一步提高镍锰酸锂复合材料的循环性能和电容量。

  比较实施例1、6至8可知,将锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值限定在本申请优选的范围内有利于进一步提高镍锰酸锂复合材料的循环性能和电容量。

  比较实施例1、10至13可知,采用本申请优选的包覆剂,并将包覆量限定在本申请优选的范围内有利于提高镍锰酸锂复合材料的循环性能和电容量。

  需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里描述的那些以外的顺序实施。

  以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

《镍锰酸锂复合材料、其制备方法及锂离子电池.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)