欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 一种合成氨原料气预处理方法及系统独创技术25125字

一种合成氨原料气预处理方法及系统

2021-02-11 03:41:58

一种合成氨原料气预处理方法及系统

  技术领域

  本发明属于煤化工技术领域,具体涉及一种合成氨原料气预处理方法及系统。

  背景技术

  合成氨装置中的氨合成反应是整个装置的核心工段,也是决定整个装置能耗的重要工段,氨合成反应对合成氨原料气中N/H比及含量有个严格的要求,氨合成对合成氨原料气组分中杂质气体和惰性气体如甲烷、氩气等会造成合成氨装置的反应效率降低、能耗升高。

  目前,在国家对传统常压煤气化方式进行更新淘汰过程中,新的替代煤气化产生的氨合成原料气其主要成分为:氢气(摩尔百分数67%~72%)、氮气(摩尔百分数22%~24%)、甲烷(摩尔百分数4%~10%)、氩气(摩尔百分数0.4%~0.6%)、水(饱和态),甲烷和氩气在氨合成工段作为惰性气体不参与反应,在系统的压缩和反应过程中会消耗大量的无用功,造成系统的能耗加大、氨合成的氨净值降低,这对合成氨工厂的氨合成工段带来严峻的挑战。因此将合成氨原料气中甲烷和氩气进行有效的脱除,并制备成一种有经济价值的甲烷产品,提高装置的附加值,将有重要的现实意义和技术先进性。

  发明内容

  本发明目的是提供一种合成氨原料气预处理方法及系统,高效脱除氨合成原料气中的杂质,并将杂质气体通过精馏提纯的方式制成一种CNG产品外输,增加了产品附加值,同时采用循环氮气增压膨胀,提高能效,降低整体装置改造成本和运营消耗。

  为了解决以上技术问题,本发明采用的技术方案是:

  一种合成氨原料气预处理方法,具体包括如下步骤:

  S1,将氨合成原料气冷却到10~20℃,并除去原料气中的水分至1ppmv;

  S2,将S1输出的脱水原料气脱除微量汞至0.01μg/Nm3,再经除尘后得到净化原料气;

  S3,将S2输出的净化原料气降温至-160~-175℃后进行气液两相分离,分离出低温净化气体I和第一甲烷低温液体,低温净化气体I温度-160~-175℃、甲烷摩尔百分数0.83%~0.98%;

  S4,将S3分离出的第一甲烷低温液体升温至-130~-150℃,再进行降压气液两相分离,分离出低温净化气体II和第二甲烷低温液体,低温净化气体II的压力3.0~4.0MPa(G)、温度-140~-150℃、甲烷摩尔百分数1.9%~2.5%;

  S5,S3的低温净化气体I升温后得到氨合成净化后原料气I,S4的低温净化气体II升温后压缩净化、再降温,得到氨合成净化后原料气II;

  S6,将氨合成净化后原料气I和氨合成净化后原料气II混合,混合后的氨合成净化后原料气降温得到净化气体,净化气体温度-180~-200℃,甲烷摩尔百分数0.85%~1.02%;

  优选的,还包括:

  S71,将S4的第二甲烷低温液体节流降压至0.8~1.3MPa(G),再经气液两相分离得到液体甲烷,所述液体甲烷中甲烷摩尔含量为92%~95%;

  S72,将S71的液体甲烷升温得到压缩天然气。

  优选的,氮膨胀制冷包括:

  S81,将常温低压氮气压缩冷却,再将低温压缩氮气降温至-90~-120℃,再进一步加压膨胀制冷得到膨胀低温氮气,膨胀低温氮气温度-180~-190℃、压力0.03~0.06MPa(G);

  S82,膨胀低温氮气一部分向S6中的气液两相分离提供冷量;

  S83,膨胀低温氮气另一部分升温后返回S71循环。

  一种合成氨原料气预处理系统,包括脱水装置、脱汞装置和深冷分离装置;脱水装置用于原料气的冷却和脱水;脱汞装置用于脱水装置输出的脱水原料气脱汞和净化;深冷分离装置包括板翅式换热器组,用于对脱汞装置输出的净化原料气进行冷却,输出低温净化原料气;深冷分离装置还包含气液分离单元,气液分离单元用于将板翅式换热器组输出的低温净化原料气气液分离输出低温净化气体,低温净化气体经板翅式换热器组升温得到氨合成净化后原料气。

  优选的,气液分离单元还将板翅式换热器组输出的低温净化原料气气液分离输出液体甲烷,液体甲烷经板翅式换热器组升温得到压缩天然气;液体甲烷中甲烷摩尔含量为92%~95%。

  优选的,气液分离单元包括第一脱氢分离器,第一脱氢分离器的输入端和输出端与板翅式换热器组连接,第一脱氢分离器用于将板翅式换热器组输出的低温净化原料气进行气液两相分离,输出低温净化气体I和第一甲烷低温液体;低温净化气体I经板翅式换热器组升温后得到氨合成净化后原料气I;

  气液分离单元还包括第二脱氢分离器,第二脱氢分离器的输入端和输出端与板翅式换热器组连接,第一甲烷低温液体经板翅式换热器组升温后经第二脱氢分离器进行降压气液两相分离,输出低温净化气体II和第二甲烷低温液体;低温净化气体II经板翅式换热器组升温后得到氨合成净化后原料气II;

  气液分离单元还包括甲烷精馏塔,甲烷精馏塔输入端与第二脱氢分离器输出端连接,甲烷精馏塔输出端与板翅式换热器组连接;甲烷精馏塔用于将第二脱氢分离器输出的第二甲烷低温液体进行气液两相分离,输出液体甲烷和不凝气体;液体甲烷经板翅式换热器组升温后得到液化天然气,不凝气体经板翅式换热器组升温后送出深冷分离装置。

  进一步的,装置还包括氮膨胀制冷装置,用于循环氮气经压缩、冷却、增压膨胀的循环制冷为深冷分离装置提供冷量;氮膨胀制冷装置包括与板翅式换热器组依次连接的氮气压缩机和第二冷却器,用于常温低压氮气的压缩降温,第二冷却器输出端与板翅式换热器组连接,压缩降温后的氮气经板翅式换热器组进一步降温;氮膨胀制冷装置还包括增压膨胀机,增压膨胀机的输入端和输出端与板翅式换热器组连接,用于将板翅式换热器组输出的高压低温氮气进一步加压和膨胀制冷,输出膨胀低温氮气;膨胀低温氮气一部分向甲烷精馏塔提供冷量,膨胀低温氮气另一部分经板翅式换热器组升温后输入氮气压缩机循环。

  进一步的,装置还包括净化气压缩模块,用于对板翅式换热器组升温后的低温净化气体II净化气压缩,输出氨合成净化后原料气II;净化气压缩模块包括依次连接的净化气压缩机和第三冷却器,板翅式换热器组升温后的低温净化气体II经净化气压缩机压缩净化后通过第三冷却器降温,得到氨合成净化后原料气II。

  优选的,脱汞装置包括依次连接的脱汞塔和粉尘过滤器,脱水装置输出的脱水原料气经脱汞塔脱汞,再经粉尘过滤器除尘后得到净化原料气;脱水装置包括依次连接的第一冷却器、除水器和干燥塔,原料气经第一冷却器冷却,再由除水器和干燥塔脱水得到脱水原料气。

  优选的,氨合成净化后原料气I和氨合成净化后原料气II混合,并经第一冷却器冷却得到净化气体。

  与现有技术相比,本发明的优点为:

  (1)本发明的合成氨原料气预处理方法及系统,采取深冷分离和低温精馏的方法脱除氨合成原料气中的杂质,将氨合成原料气中的甲烷组分降低至≤1.2%,在降低氨合成原料气中甲烷组分的同时确保氨合成原料气中氢气的回收率≥99.5%,不仅达到了氨合成原料气的净化要求和氢气回收率要求,而且将杂质气体通过精馏提纯的方式制成一种CNG产品外输,增加了产品附加值。

  (2)本发明的合成氨原料气预处理方法及系统,制冷采用循环氮气增压膨胀流程,简化了氨合成原料气深冷分离甲烷的流程,大幅减少混合冷剂压缩机所需的冷剂配比系统投资和占地面积,降低了装置改造成本,非常适合于老合成氨装置改造项目。

  (3)本发明的合成氨原料气预处理方法及系统,通过对部件结构的合理设置,在脱水装置设置第一冷却器和除水器,通过将原料气中的饱和水降温粗脱除,可以大幅提高脱水装置干燥塔的吸附效果、有效降低干燥塔吸附剂的再生能耗基础,延长装置干燥塔吸附剂的使用周期,降低装置的整体运营消耗。

  附图说明

  图1是本发明的各模块连接示意图;

  图2是本发明的装置连接示意图。

  附图中各个标号含义:

  1-脱水装置,2-脱汞装置,3-深冷分离装置,4-氮膨胀制冷装置,5-净化气压缩模块;11-第一冷却器,12-除水器,13-干燥塔;14-脱汞塔,15-粉尘过滤器;16-板翅式换热器组,17-第一脱氢分离器,18-第一节流阀,19-第二脱氢分离器,20-第二节流阀,21-甲烷精馏塔;22-氮气压缩机,23-第二冷却器,24-增压膨胀机;25-净化气压缩机,26-第三冷却器。

  以下结合附图和具体实施方式对本发明的具体内容作进一步详细解释说明。

  具体实施方式

  以下给出本发明的具体实施方式,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。

  在本发明中,在未作相反说明的情况下,使用的方位词如“上、下”通常是指以相应附图的图面为基准定义的,“内、外”是指相应部件轮廓的内和外。

  本发明的氨合成原料气主要成分为:氢气(摩尔百分数67%~72%)、氮气(摩尔百分数22%~24%)、甲烷(摩尔百分数4%~10%)、氩气(摩尔百分数0.4%~0.6%)、水(饱和态),采取深冷分离和低温精馏的方法脱除氨合成原料气中的杂质,将氨合成原料气中的甲烷组分降低至摩尔百分数0.85%~1.02%,预处理后的净化气体氩气摩尔百分数0.33%~0.35%作为补充性的考核指标。

  一种合成氨原料气预处理方法,具体包括如下步骤:

  S1,将氨合成原料气冷却到10~20℃,并除去原料气中的水分至1ppmv;

  S2,将S1输出的脱水原料气脱除微量汞至0.01μg/Nm3,再经除尘后得到净化原料气;

  S3,将S2输出的净化原料气降温至-160~-175℃后进行气液两相分离,分离出低温净化气体I和第一甲烷低温液体,低温净化气体I温度-160~-175℃、甲烷摩尔百分数0.83%~0.98%;

  S4,将S3分离出的第一甲烷低温液体升温至-130~-150℃,再进行降压气液两相分离,分离出低温净化气体II和第二甲烷低温液体,低温净化气体II的压力3.0~4.0MPa(G)、温度-140~-150℃、甲烷摩尔百分数1.9%~2.5%;

  S5,S3的低温净化气体I升温后得到氨合成净化后原料气I,S4的低温净化气体II升温后压缩净化、再降温,得到氨合成净化后原料气II;

  S6,将氨合成净化后原料气I和氨合成净化后原料气II混合,混合后的氨合成净化后原料气降温得到净化气体,净化气体温度-180~-200℃,甲烷摩尔百分数0.85%~1.02%;

  其中,第一甲烷低温液体、低温净化气体I和低温净化气体II的升温,均为与输入的净化原料气换热升温;

  其作用为:将氨合成原料气中的甲烷组分降低至≤1.2%,达到了氨合成原料气的净化要求和氢气回收率要求。

  具体的,还包括:S71,将S4的第二甲烷低温液体节流降压至0.8~1.3MPa(G),再经气液两相分离得到液体甲烷,所述液体甲烷中甲烷摩尔含量为92%~95%;S72,将S71的液体甲烷升温得到压缩天然气;

  其作用为:在降低氨合成原料气中甲烷组分的同时确保氨合成原料气中氢气的回收率≥99.5%,将杂质气体通过精馏提纯的方式制成一种CNG产品外输,增加了产品附加值。

  具体的,还包括:

  S81,将常温低压氮气压缩冷却,再将低温压缩氮气降温至-90~-120℃,再进一步加压膨胀制冷得到膨胀低温氮气,膨胀低温氮气温度-180~-190℃、压力0.03~0.06MPa(G);

  S82,膨胀低温氮气一部分向S6中的气液两相分离提供冷量;

  S83,膨胀低温氮气另一部分升温后返回S71循环;

  其作用为:制冷采用循环氮气增压膨胀流程,简化了氨合成原料气深冷分离甲烷的流程,大幅减少混合冷剂压缩机所需的冷剂配比。

  一种合成氨原料气预处理系统,包括脱水装置1、脱汞装置2和深冷分离装置3;

  脱水装置1用于原料气的冷却和脱水;其作用为:将来自上游工段来的氨合成原料气(7.0~8.0MPa(G)、40℃)冷却到10~20℃,并除去原料气中的水分至1ppmv,以进行下一级脱汞,达到提高脱汞过程效率的目的;

  脱汞装置2用于脱水装置1输出的脱水原料气脱汞和净化;其作用为:将脱水原料气浸硫基活性炭脱除其中的微量汞至0.01μg/Nm3,并进行粉尘过滤净化至5μm以上颗粒99.9%脱除,保证进入下一级深冷分离过程的原料气H2O≤1ppmv、Hg≤0.01μg/Nm3,达到提高深冷分离过程效率的目的;

  深冷分离装置3包括板翅式换热器组16,板翅式换热器组16用于对脱汞装置2输出的净化原料气进行冷却,输出低温净化原料气;深冷分离装置3还包含气液分离单元,气液分离单元用于将板翅式换热器组16输出的低温净化原料气气液分离输出低温净化气体,低温净化气体经板翅式换热器组16升温得到氨合成净化后原料气;

  其作用为:将脱水脱汞后的净化原料气通过板翅式换热器组16冷却至低温净化原料气(-160~-175℃),由气液分离单元分离得到低温净化气体(甲烷摩尔百分数0.85%~1.02%、氩气摩尔百分数0.33%~0.35%),低温净化气体经板翅式换热器组16与净化原料气换热升温后输出氨合成净化后原料气,氨合成净化后原料气中的甲烷组分降低至≤1.2%,达到了氨合成原料气的净化要求。

  具体的,气液分离单元还将板翅式换热器组16输出的低温净化原料气气液分离输出液体甲烷,液体甲烷经板翅式换热器组16升温得到压缩天然气;液体甲烷中甲烷摩尔含量为92%~95%;

  其作用为:板翅式换热器组16输出的低温净化原料气(-160~-175℃)由气液分离单元分离得到液体甲烷,液体甲烷经板翅式换热器组16与净化原料气换热升温后输出压缩天然气,在满足氨合成原料气净化要求的同时确保氨合成原料气中氢气的回收率≥99.5%,达到了氨合成原料气的氢气回收率要求;而且将杂质气体通过精馏提纯的方式制成一种CNG产品(液化天然气)外输,增加了产品附加值。

  气液分离单元包括第一脱氢分离器17,第一脱氢分离器17的输入端和输出端与板翅式换热器组16连接,第一脱氢分离器17用于将板翅式换热器组16输出的低温净化原料气进行气液两相分离,输出低温净化气体I和第一甲烷低温液体;低温净化气体I经板翅式换热器组16升温后得到氨合成净化后原料气I;

  其作用为:第一脱氢分离器17将低温净化原料气气液两相分离得到低温净化气体I(-160~-175℃、甲烷摩尔百分数≤1%)和第一甲烷低温液体(-160~-175℃、甲烷摩尔百分数23%~38%、氮气摩尔百分数58%~71%、氢气摩尔百分数4%~6%),低温净化气体I经板翅式换热器组16与净化原料气换热升温后得到氨合成净化后原料气I(30~40℃、甲烷摩尔百分数≤1%),第一甲烷低温液体进行下一段分离工序;

  气液分离单元还包括第二脱氢分离器19,第二脱氢分离器19的输入端和输出端与板翅式换热器组16连接,第一甲烷低温液体经板翅式换热器组16升温后经第二脱氢分离器19进行降压气液两相分离,输出低温净化气体II和第二甲烷低温液体;低温净化气体II经板翅式换热器组16升温后得到氨合成净化后原料气II;

  其作用为:第二脱氢分离器19将第一甲烷低温液体再次进行降压气液两相分离,分离出低温净化气体II(3.0~4.0MPa、-130~-150℃、甲烷摩尔百分数≤3.5%)和第二甲烷低温液体,低温净化气体II低温净化气体II经板翅式换热器组16与净化原料气换热升温后得到氨合成净化后原料气II(30~40℃、甲烷摩尔百分数≤3.5%),第二甲烷低温液体进行下一段分离工序;

  其中,第一甲烷低温液体经板翅式换热器组16升温后,经第一节流阀18传送至第二脱氢分离器19;

  气液分离单元还包括甲烷精馏塔21,甲烷精馏塔21输入端与第二脱氢分离器19输出端连接,甲烷精馏塔21输出端与板翅式换热器组16连接;甲烷精馏塔21用于将第二脱氢分离器19输出的第二甲烷低温液体进行气液两相分离,输出液体甲烷和不凝气体;液体甲烷经板翅式换热器组16升温后得到液化天然气,不凝气体经板翅式换热器组16升温后送出深冷分离装置3;

  其作用为:将第二甲烷低温液体在甲烷精馏塔21气液两相分离,通过调整甲烷精馏塔21塔底的热量和塔顶的冷量,富甲烷液体越往下甲烷纯度越高,最后从甲烷精馏塔塔底排出甲烷含量为摩尔百分数92%~95%的甲烷液体产品,甲烷液体产品经板翅式换热器组16与净化原料气换热升温后送出深冷分离装置3作为CNG(压缩天然气)产品外输;甲烷精馏塔21塔顶不凝气体经过板翅式换热器组16与净化原料气换热升温后送出深冷分离装置3;

  其中,第二脱氢分离器19输出的第二甲烷低温液体经第二节流阀20传送至甲烷精馏塔21。

  具体的,装置还包括氮膨胀制冷装置4,用于循环氮气经压缩、冷却、增压膨胀的循环制冷为深冷分离装置3提供冷量;

  氮膨胀制冷装置4包括与板翅式换热器组16依次连接的氮气压缩机22和第二冷却器23,用于常温低压氮气的压缩降温,第二冷却器23输出端与板翅式换热器组16连接,压缩降温后的氮气经板翅式换热器组16进一步降温;

  氮膨胀制冷装置4还包括增压膨胀机24,增压膨胀机24的输入端和输出端与板翅式换热器组16连接,用于将板翅式换热器组16输出的高压低温氮气进一步加压和膨胀制冷,输出膨胀低温氮气;膨胀低温氮气一部分向甲烷精馏塔21提供冷量,膨胀低温氮气另一部分经板翅式换热器组16升温后输入氮气压缩机22循环;

  其作用为:循环氮气经压缩、冷却、增压膨胀的循环制冷过程为整个氨合成原料气脱除甲烷和富甲烷气提纯制取CNG产品提供冷量,简化了氨合成原料气深冷分离甲烷的流程,大幅减少混合冷剂压缩机所需的冷剂配比系统投资和占地面积,降低了装置改造成本,非常适合于老合成氨装置改造项目。

  具体的,装置还包括净化气压缩模块5,用于对板翅式换热器组16升温后的低温净化气体II净化气压缩,输出氨合成净化后原料气II;净化气压缩模块5包括依次连接的净化气压缩机25和第三冷却器26,板翅式换热器组16升温后的低温净化气体II经净化气压缩机25压缩净化后通过第三冷却器26降温,得到氨合成净化后原料气II。

  具体的,脱汞装置2包括依次连接的脱汞塔14和粉尘过滤器15,脱水装置1输出的脱水原料气经脱汞塔14脱汞,再经粉尘过滤器15除尘后得到净化原料气;其作用为:脱汞塔14用于将脱水原料气浸硫基活性炭脱除其中的微量汞至0.01μg/Nm3,粉尘过滤器15用于过滤原料气中的粉尘净化至5μm以上颗粒99.9%脱除,保证进入下一级深冷分离过程的原料气H2O≤1ppmv、Hg≤0.01μg/Nm3,达到提高深冷分离过程效率的目的;

  脱水装置1包括依次连接的第一冷却器11、除水器12和干燥塔13,原料气经第一冷却器11冷却,再由除水器12和干燥塔13脱水得到脱水原料气;其作用为:通过第一冷却器和除水器将原料气中的饱和水降温粗脱除,可以大幅提高脱水装置干燥塔的吸附效果、有效降低干燥塔吸附剂的再生能耗基础,延长装置干燥塔吸附剂的使用周期,降低装置的整体运营消耗。

  具体的,氨合成净化后原料气I和氨合成净化后原料气II混合,并经第一冷却器11冷却得到净化气体;其作用为:氨合成净化后原料气I和氨合成净化后原料气II混合经第一冷却器11冷却后得到净化气体并送入下游氨合成工段,其中净化气体中的甲烷组分降低至摩尔百分数≤1.2%,满足氨合成原料气的净化要求和氢气回收率要求。

  系统中各装置采用的设备均为现有设备。

  实施例

  某氨合成工段原料气含有摩尔百分数4%~10%甲烷、摩尔百分数0.4%~0.6%氩气,根据后续氨合成反应需要,需要将其中的甲烷脱除至摩尔百分数1.5%以下、氩气尽可能脱除,氨合成工段原料气主要体积百分数如下:

  

  

  自上游工段来的常温、高压氨合成原料气,依次进入脱水装置1的第一冷却器11、除水器12和干燥塔13,将原料气冷却到10~20℃并除去原料气中的水分至1ppmv,然后在脱汞塔14中经浸硫基活性炭脱除原料气中的微量汞至0.01μg/Nm3。进入深冷分离装置3的原料气保证H2O≤1ppmv、Hg≤0.01μg/Nm3。

  脱水脱汞后的净化原料气进入板翅式换热器组16温度降至约-160~-175℃后,送入第一脱氢分离器17中进行气液两相分离,分离出低温净化气体I(-160~-175℃、甲烷摩尔百分数0.83%~0.98%)和第一甲烷低温液体,低温净化气体I经过板翅式换热器组16与净化原料气换热升温后送出深冷分离装置3,并与第一冷却器11中换热升温后送至下游氨合成工段。

  第一甲烷低温液体经板翅式换热器组16回收部分冷量后升温至-130~-150℃,送入第二脱氢分离器19中进行降压气液两相分离,分离出低温净化气体II(3.0~4.0MPa(G)、-140~-150℃、甲烷摩尔百分数1.9%~2.5%)和第二甲烷低温液体,低温净化气体II经过板翅式换热器组16与净化原料气换热升温后送出深冷分离装置3,通过净化气压缩机25压缩和第三冷却器26降温后,与净化后原料气I混合,混合后的净化气体甲烷摩尔百分数0.85%~1.02%、氩气摩尔百分数0.33%~0.35%。

  第二甲烷低温液体经进一步节流降压至0.8~1.3MPa(G)后从甲烷精馏塔21中部进入甲烷精馏塔21,甲烷精馏塔21的操作温度为-130~-170℃,塔顶压力约0.75MPa(G),最后从甲烷精馏塔21塔底排出甲烷含量为摩尔百分数92%~95%的甲烷液体产品,经过板翅式换热器组16与净化原料气换热升温后送出深冷分离装置作为CNG(压缩天然气)产品外输。

  使用Aspen软件对装置的热工数据进行数值模拟计算,合成氨净化气体的氢气回收率达到了摩尔百分数99.5%~99.7%,杂质气体脱除至甲烷摩尔百分数0.85%~1.02%、氩气摩尔百分数0.33%~0.35%,净化气体完全满足氨合成的要求,可大幅降低后续合成氨的能耗。制取的CNG产品,甲烷摩尔百分数为92%~95%、氮气摩尔百分数为2%~4%、氩气摩尔百分数为3%~4%,工艺电耗约0.45~0.49kwh/Nm3。净化气体的低温冷量和脱水装置原料气进行换热耦合,提前分离出原料气中的液滴,可降低脱水装置脱水负荷约50%~70%,可以大幅提高脱水装置干燥塔的吸附效果、有效降低干燥塔吸附剂的再生能耗200~300kwh。

  采用循环氮气增压膨胀制冷流程,简化了传统深冷分离甲烷的方法,大幅减少混合冷剂压缩机所需的冷剂配比系统投资和占地面积,降低了装置改造成本,非常适合于老合成氨装置改造项目。

《一种合成氨原料气预处理方法及系统.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)