欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 三嗪基D-A型含氮有机共轭多孔聚合物光催化材料及其制备与应用独创技术18785字

三嗪基D-A型含氮有机共轭多孔聚合物光催化材料及其制备与应用

2021-01-31 20:23:45

三嗪基D-A型含氮有机共轭多孔聚合物光催化材料及其制备与应用

  技术领域

  本发明属于光催化半导体材料技术领域,涉及一种三嗪基D-A型含氮有机共轭多孔聚合物光催化材料及其制备与应用。

  背景技术

  随着人类社会的不断发展,地球上有限的化石燃料已越来越难以满足人类对能源的需求,并且化石燃料的使用也带来了日益严重的环境问题。因此,寻找一种新型、可再生新能源是非常必要的。光催化水分解是一种模拟植物光合作用的主要途径之一,它可以将太阳能这种取之不尽,用之不竭的绿色能源转化为可存储、可再生、清洁、高效的无污染氢气染料,将太阳能转化为稳定的化学能,大大提高对太阳能的利用,是理想的能源开发途径之一。

  在过去的几十年中,如何提高光催化效率一直是热门话题之一。早期在光催化水分解这一领域以研究无机半导体材料为主,但其性能有限,大部分半导体材料带宽较大,只能吸收太阳光中的紫外波段,而紫外线只占太阳光谱中可用能量的3%,极大的限制了太阳能的利用效率。直到09年,最具有代表性的光催化聚合物半导体材料g-C3N4的发现,有关有机半导体材料的研究才被逐步推进。与无机半导体相比,有机共轭多孔聚合物材料因其较大的比表面积,可调节的光学带隙及较宽的可见光吸收范围而被广泛关注。以往对有机半导体的研究大多数基于g-C3N4,由于其合适的光学带隙和可见光响应。然而,由于g-C3N4材料在460nm以上较弱的可见光吸收,高激子结合率和快速的电子-空穴对复合率,g-C3N4系列材料的光催化产氢速率(HER)和表观量子产率(AQE)仍然远远不够。因此,设计合成新型有机半导体材料来有效提高光催化性能对于能源材料领域是非常必要的。

  基于近几年对共轭多孔聚合物的研究显示,含氮单元能够有效改善水分解中的光催化活性,由于氮原子上的孤对电子可以作为光催化界面氧化还原反应的活性位点。目前现有的研究中,用于合成共轭聚合物的大多数合成方法都是基于金属催化的交叉偶联反应,如Suzuki偶联反应,Still偶联反应,Sonogashira-hagihara反应,Yamamoto反应等。然而,这些金属催化的反应大多都会有少量金属残留在聚合物孔隙中,导致共轭材料电子性质测量或光学性质复杂化,可能会进一步影响光催化性能,因为金属本身可作为光催化反应的助催化剂,因此寻找一种高效、温和、简单无害的无金属催化的合成方法来合成共轭多孔聚合物也是非常必要的。

  发明内容

  本发明的目的就是为了提供一种三嗪基D-A型含氮有机共轭多孔聚合物光催化材料及其制备与应用。克服了传统合成方法易导致聚合物孔隙中有金属残留的缺陷,采用简单、高效、温和的无金属催化合成方法。在结构设计中引入可作为光催化界面氧化还原反应活性位点的N原子以提高聚合物光催化活性。此外,还通过单原子取代(O,S,Se)策略调控D-A结构单元,从而调控聚合物光学带隙及LUMO能级,达到进一步调控聚合物光催化性能的目的

  本发明的目的可以通过以下技术方案来实现:

  本发明的技术方案之一提出了一种三嗪基D-A型含氮有机共轭多孔聚合物光催化材料,其结构如下:

  

  其中,

  即上述材料具体有P1、P3和P4三种结构产物,其结构如下:

  

  本发明的技术方案之二提出了一种三嗪基D-A型含氮有机共轭多孔聚合物光催化材料的制备方法,称取三氯聚嗪置于充满氮气的反应容器中,加入D-A型含吡唑小分子单体、以及采用氮气脱气后的弱碱和溶剂,油浴加热反应,过滤、洗涤、干燥后,即得到目的产物。

  进一步的,三氯聚嗪、D-A型含吡唑小分子单体、弱碱和溶剂的加入量之比为(0.4-0.6)mmol:(0.6-0.9)mmol:(2.4-3.6)mmol:(100-250)mL。更进一步的,三氯聚嗪、D-A型含吡唑小分子单体、弱碱的投料摩尔比优选约为1:1.5:6。

  进一步的,所述的二唑类小分子单体为1,4-双(1H-吡唑-4-基)苯并噻二唑、1,4-双(1H-吡唑-4-基)2,1,3-苯并恶二唑、或1,4-双(1H-吡唑-4-基)2,1,3-苯并硒基二唑。

  进一步的,所述的弱碱为N,N-二异丙基乙胺,其作为催化剂,所述的溶剂为超干四氢呋喃(即dry THF,无水)。

  进一步的,油浴加热的温度为80℃,反应时间为24h。

  进一步的,油浴加热过程具体为:在1h内将浴温升至80℃,并保温反应。

  本发明避开了传统的金属催化偶联合成方法,避免少量金属残留在多孔聚合物孔隙中,对其光催化性能造成影响,合成方法简单、温和、高效,无强酸、强碱催化。通过含有双吡唑小分子在弱碱作用下脱氢,再跟三氯聚氰发生芳香亲核取代反应,最终形成聚合物。

  本发明的反应为弱碱催化的芳香亲核取代反应,在N,N-二异丙基乙胺弱碱的催化下,D-A型含吡唑小分子中氢脱下,而后氮负离子进攻三氯聚嗪中与Cl相连的碳,而后Cl离去,因此,三氯聚嗪和D-A型小分子单体作为反应原料,N,N-二异丙基乙胺作为弱碱催化反应。

  原料添加量摩尔比是三氯聚嗪:D-A邢型分子单体=1:1.5,因为聚合成的聚合物结构为立体三维网状结构,若原料添加量不对,则可能导致聚合反应不完全或结构不对聚合失败,弱碱为催化剂,因此只要过量即可,一般摩尔比为三氯聚嗪:弱碱=1:6,如弱碱添加量不够则可能导致D-A型小分子上氢脱落不完全,则导致聚合失败。反应溶剂超干THF为使反应前反应原料充分溶解,而反应后聚合物析出,因此不需太多,但不能太少,至少保证反应前原料全部溶解,否则可能导致某一原料在溶液中的比例不够从而导致聚合失败。此外,溶剂THF应为超干溶剂,因为水会导致三氯聚嗪失效,因此,反应过程中应全程氮气保护且无水条件。

  本发明的技术方案之三提出了一种三嗪基D-A型含氮有机共轭多孔聚合物光催化材料在光催化产氢中的应用。

  进一步的,应用在光催化产氢中时,将该光催化材料置于以10%三乙醇胺为牺牲剂、以Pt为助催化剂的水溶液中。

  在模拟太阳光AM 1.5光照射下(1wt%Pt助催化剂),P1,P3,P4分别有14μmolh-1,8μmolh-1,1.2μmolh-1的产氢速率(HER),在可见光照射下(λ≥420nm)(3wt%Pt助催化剂),P1,P3,P4分别有50μmolh-1,22μmolh-1,1.3μmolh-1的产氢速率(HER),表现为可见光活性的光催化剂并展现真正的光催化过程。并且,该类材料在五次循环过程中展现几乎不变的光催化性能,证明该类材料具有较好的光稳定性。且该类材料的最高表观量子产率为3.58%(420±20nm)。

  更进一步的,光催化过程中,用10%三乙醇胺(Triethanolamine,TEOA)为牺牲剂(三乙醇胺:水=9:1,体积比)。

  光催化过程中,用Pt作为助催化剂,且其光催化性能与Pt助催化剂量有关,当Pt助催化剂量为3wt%时,光催化性能最佳。更优选的,助催化剂Pt采用原位热沉积法还原H2PtCl6,使其助沉积在聚合物光催化剂表面。具体方法为:50mg所制得的聚合物粉末(即P1、P2或P3)超生分散在H2PtCl6溶液中,在80℃烘箱中烘干后,将温度升至180℃,热沉积2小时。

  本发明的材料是由可见光驱动的光催化过程。具体体现在,在使用单色光作为光源时,该类材料的表观量子产率(AQE)与其紫外-可见吸收光谱相吻合,最高表观量子产率为3.58%(420±20nm)。

  本发明的主要特征是:1)通过单原子取代(O,S,Se)调控给体-受体(D-A)型聚合物光电性能,从而达到进一步调控D-A型聚合物的光催化性能的目的;2)通过引入可作为光催化界面氧化还原反应活性位点的N原子来进一步提高材料的光催化产氢效率;3)通过简单、高效、温和的无金属催化的合成过程制备,制得的材料无毒无害并且可以有效避免共轭多孔聚合物中的少量金属残留及其对材料和光催化性能的影响。

  与现有技术相比,本发明具有以下优点:

  一、本发明通过单原子取代(O,S,Se)策略对聚合物中D-A结构单元进行调控,通过单原子取代微调结构差异小,可对比程度高,同时可以对聚合物光学带隙及LUMO能级调控,达到调控光催化活性的目的。

  二、本发明采用的简单、高效、温和的无金属催化的合成方法有效地避免了传统金属催化的偶联反应导致聚合物孔隙中有少量金属残留的缺陷。

  三、本发明通过在聚合物结构设计中引入可作为光催化界面氧化还原反应活性位点的N原子,进一步提高聚合物光催化活性,最高产氢速率(HER)可达1000μmolh-1g-1(λ≥420nm),最高表观量子产率(AQE)可达3.58%(420±20nm)。

  附图说明

  图1为本发明所制备的系列三嗪基D-A型含氮有机共轭多孔聚合物光催化材料合成路线;

  图2为本发明所制备的系列三嗪基D-A型含氮有机共轭多孔聚合物光催化材料P1、P3、P4固体核磁及前驱体M1、M3、M4 13C NMR;

  图3为本发明所制备的系列三嗪基D-A型含氮有机共轭多孔聚合物光催化材料a)P1紫外漫反射图,Tauc plots.法计算相应光学带隙图;b)P1循环伏安扫描曲线(CV);c)P3紫外漫反射图,Tauc plots.法计算相应光学带隙图;d)P3循环伏安扫描曲线(CV);e)P4紫外漫反射图,Tauc plots.法计算相应光学带隙图;f)P4循环伏安扫描曲线(CV);

  图4为本发明所制备的系列三嗪基D-A型含氮有机共轭多孔聚合物光催化材料LUMO及HOMO能级分布图;

  图5为本发明所制备的系列三嗪基D-A型含氮有机共轭多孔聚合物光催化材料P1、P3、P4光催化性能图及P1、P3、P4荧光寿命拟合曲线。

  具体实施方式

  下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

  以下各实施方式或实施例中,三氯聚嗪全称为2,4,6-三氯-1,3,5-三嗪,CAS号:108-77-0,从探索平台购买,产品编号01006931,原商品编号:13737C,品牌为:Adamas。小分子1,4-双(1H-吡唑-4-基)苯并噻二唑等可以采用常规市售产品,也可以根据文献制得,参考文献为L.J.Kershaw Cook,et al,Tetrahedron Lett.,57(2016)895–898,具体制备时,可通过将参考文献中的原料对二溴苯依次替换为原料4,7-二溴-2,1,3-苯并噻二唑,4,7-二溴-2,1,3-苯噁二唑和4,7-二溴-2,1,3-苯并硒二唑并制备得到。

  其余如无特别说明的原料或处理技术,则表明均为本领域的常规市售原料或常规处理技术。

  实施例1:

  三嗪基D-A型含氮有机共轭多孔聚合物(P1)光催化材料的合成与制备:

  快速称取三氯聚嗪(110mg,0.6mmol)并放入底部含有磁力搅拌器并配有冷凝管的充满氮气的250mL两口圆底烧瓶中,然后加入小分子单体1,4-双(1H-吡唑-4-基)苯并噻二唑(M1)(240mg,0.89mmol),预先用氮气脱气的N,N-二异丙基乙胺(460mg,3.60mmol)和超干四氢呋喃(dry THF,100mL,无水)。将烧瓶置于油浴中,并在1小时内将浴温升至80℃。一小时后,黄色沉淀开始生成。将反应混合物搅拌并回流23小时后(氮气下),通过抽滤分离固体产物,分别用去离子水(10×20mL),N,N-二甲基甲酰胺(10×20mL),甲醇(10×20mL)洗涤,真空干燥后得到黄色固体产物(240mg,80%)。固体核磁共振碳谱(150MHz):δ(ppm)=160.455,150.099,142.869,120.121.元素分析(%)(C21H9N12S1.5·5H2O)(C21H9N12S1.5为单个重复单元):C 44.44,H 3.37,N 29.62;found:C 44.73,H 3.36,N27.73.

  本发明中,当参照上述实施例1,不采用N,N-二异丙基乙胺为催化剂,或改变任一原料比例时,发现会导致聚合反应失败,最终无对应产物生成。

  实施例2:

  三嗪基D-A型含氮有机共轭多孔聚合物(P3)光催化材料的合成与制备:

  与实施例1中的P1合成方法类似,使用三氯聚氰(97mg,0.53mmol),1,4-双(1H-吡唑-4-基)2,1,3-苯并恶二唑(M3)(200mg,0.79mmol),N,N-二异丙基乙胺(0.55mL,3.18mmol),超干四氢呋喃(dry THF,250mL,无水),得到P3橙黄色固体产物(150mg,60%)。

  实施例3:

  三嗪基D-A型含氮有机共轭多孔聚合物(P4)光催化材料的合成与制备:

  与实施例1中的P1合成方法类似,使用三氯聚氰(78mg,0.42mmol),1,4-双(1H-吡唑-4-基)2,1,3-苯并硒基二唑(M4)(200mg,0.63mmol),N,N-二异丙基乙胺(0.44mL,2.55mmol),超干四氢呋喃(dry THF,250mL,无水),得到P4橙色固体产物(170mg,68%)。

  上述制得的三嗪基D-A型含氮有机共轭多孔聚合物(P1)光催化材料的Pt助催化剂热沉积操作方法:

  将50mg预处理好的聚合物P1粉末加入一定量H2PtCl6溶液并超声使其均匀分散,在80℃烘箱中烘干后,将温度升至180℃,热沉积2小时即可。

  图1为系列三嗪基D-A型含氮有机共轭多孔聚合物的合成路线。传统多孔共轭聚合物的合成方法是采用金属催化的交叉偶联方法,这些金属催化的反应大多都会有少量金属残留在聚合物孔隙中,导致共轭材料电子性质测量或光学性质复杂化,并且金属可作为光催化反应的助催化剂,可能会进一步影响光催化性能。上述实施例所采用的合成方法简单、温和、高效且无强酸、强碱、金属催化,有效地避开了金属残留问题。在弱碱N,N-二异丙基乙胺的催化下,小分子前驱体M1、M3、M4上的吡唑脱氢,然后跟三氯聚氰发生亲核取代反应,得到最终多孔共轭聚合物P1、P3、P4。

  图2为本发明所制备的系列共轭多孔聚合物P1、P3、P4固体核磁碳谱,P1(150MHz):δ(ppm)=160.455,150.099,142.869,120.121.P3(150MHz):δ(ppm)=163.14,147.65,128.81,121.18,116.86.P4(150MHz):δ(ppm)=162.83,157.81,147.25,123.68.聚合物固体核磁碳谱与小分子前驱体M1、M3、M4碳谱及模板分子4碳谱相对比可证明聚合物的结构。以P1为例说明,160.455ppm,150.099ppm和142.869ppm三个低场信号可分别归属与三嗪环中与N相邻的碳原子、苯并噻重氮和吡唑环中碳原子,其余的碳原子信号均可归属于120.121ppm处的宽场信号。P3和P4的峰归属与P1类似,具体可见图2。

  图3为为本发明所制备的系列共轭多孔聚合物P1、P3、P4的紫外漫反射图,根据紫外漫反射图用Tauc plots.法计算的相应光学带隙图以及P1、P3、P4的相应循环伏安曲线(CV)图。P1、P3、P4的光学带隙分别为2.33eV、2.18eV、2.28eV,相比之下,P1的带隙最宽而P3的带隙最窄,因P3相比P1具有更强的吸电子单元,虽可以增强可见光吸收范围,但其相应的光学带隙更窄。P1、P3、P4循环伏安曲线图的第一还原电势分别为-1.1V、-1.12V和-1.13V,用于计算其相应的LUMO轨道能级。

  图4为根据图3中聚合物P1、P3、P4循环伏安曲线的第一还原电势计算得到的相应P1、P3、P4的LUMO轨道能级,分别为-0.42eV、-0.44eV和-0.45eV(v.s.SHE)。再根据公式Eg=ELUMO-EHOMO计算相应的HOMO轨道能级,分别为1.91eV、1.74eV和1.83eV(v.s.SHE)。相比P3、P4,P1具有更低的LUMO能级,相对应其光催化产氢性能更好,而P3和P4的LUMO能级更高,因此其光催化产氢性能有所下降。

  图5为本发明所制备的系列共轭多孔聚合物P1、P3、P4的光催化性能图。所有光催化测试均在10%TEOA为牺牲剂,Pt为助催化剂(H2PtCl6热沉积而得)条件下测试。图5a和5b为P1、P3、P4在AM 1.5模拟太阳光下和可见光照射下(λ≥420nm)(10%TEOA,1wt%Pt)的光催化产氢数据,表明真正意义上的光催化过程。相对比,P1有更高的光催化产氢效率而P4的产氢效率最低,P3相比P1有更强的吸电子单元,导致其可见光吸收范围更宽,有更窄的带隙和相对更高的LUMO能级,因此其产氢效率不如P1。而P4相比P1有更弱的吸电子单元,其分子内电荷转移相对较弱,电子-空穴对复合率更高,此外,Se原子的引入导致离子电势的降低,键长的增长以及芳香性降低,综合以上因素,导致其光催化产氢性能最低。图5c为催化剂Pt的不同助沉积量测试,随着Pt助沉积量的增加,光催化性能也有所增加,当助沉积量达到3wt%时,为最佳。图5d为循环性能测试,重复5次测试后,聚合物还能保持与开始时相似的产氢速率,证明其较好的稳定性。图5e是为进一步探索该光催化过程是否是由可见光驱动的光催化过程,该测试使用单色光作为光源,从图中可以看出该聚合物表观量子产率与其UV-Vis吸收光谱吻合,表明真正的光驱动光催化过程,最高产氢速率(HER)可达1000μmolh-1g-1(λ≥420nm),最高表观量子产率(AQE)可达3.58%(420±20nm)。此外,我们还通过荧光寿命测试跟踪了光生电荷的寿命。如图5f所示,P1、P3、P4荧光寿命分别为0.98ns,0.88ns,0.83ns。这与光催化活性非常吻合,表明通过单原子取代(O,S,Se)对D-A分子结构设计对光催化剂的重要性,微小的改变也会导致光催化性能的巨大差异。

  上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

《三嗪基D-A型含氮有机共轭多孔聚合物光催化材料及其制备与应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)