欢迎光临小豌豆知识网!
当前位置:首页 > 纺织技术 > 织造> 燃料箱独创技术28951字

燃料箱

2021-03-10 00:32:40

燃料箱

  技术领域

  本发明涉及一种对树脂制燃料箱(fuel tank)的加强。

  背景技术

  在专利文献1中记载了以织物状态使用由碳纤维、聚芳酰胺纤维、玻璃纤维等纤维构成的纤维增强塑料来作为增强纤维。另外,在专利文献2中记载了以多层织物状态来使用纤维增强树脂复合材料(fiber reinforced resin composite material)。

  现有技术文献

  专利文献

  专利文献1:日本发明专利公开公报特开昭61-102452号

  专利文献2:日本发明专利公开公报特开2005-313346号

  发明内容

  【发明所要解决的技术问题】

  另外,车辆所使用的树脂制燃料箱由于燃料挥发而产生气体,据此箱内的压力上升,箱体发生膨胀。另外,除了箱体因气体压力而膨胀以外,还由于箱体由树脂制成,因此燃料本身浸透在箱体的树脂中而溶胀,由此箱本身发生膨胀。在专利文献1、专利文献2中均没有深入研究适用纤维增强树脂来作为抑制燃料箱的膨胀的手段。

  本发明的目的在于,提供一种能抑制树脂箱膨胀的燃料箱。

  【用于解决技术问题的技术方案】

  本发明的特征在于,具有箱主体和罩部件(covermaterial),其中,所述箱主体由树脂材料构成;所述罩部件使用线来制成,其中所述线由能与所述箱主体的表面焊接(溶接)的含有热塑性树脂的纤维增强复合材料构成,所述罩部件至少在被焊接于所述箱主体的上表面的部位具有斜纹组织结构。

  【发明效果】

  根据本发明,能够提供一种能够抑制树脂箱膨胀的燃料箱。

  附图说明

  图1是表示将第1实施方式所涉及的燃料箱分离为箱主体和罩部件的状态的立体图。

  图2是表示箱主体的壁面的剖面图。

  图3表示箱主体的位移分布图,(a)是俯视图,(b)是仰视图。

  图4表示织物的三原组织,(a)是平纹组织,(b)是斜纹组织,(c)是缎纹组织。

  图5是表示斜纹组织的罩部件的剖视图。

  图6是表示斜纹组织的罩部件的变形例的剖视图。

  图7是表示罩部件所使用的由纤维增强复合材料构成的线的剖视图。

  图8是燃料箱的制造工序图。

  图9表示斜纹组织的罩部件的配置,(a)是纤维方向为0°的情况,(b)是纤维方向为45°的情况。

  图10是表示斜纹组织和变则缎纹组织(iregular satin;不规则缎纹组织)的情况下的抗剥强度(peel strength)与位移的关系的曲线图。

  图11表示罩部件的成型性的试验结果,(a)是双层斜纹组织的情况,(b)是变则缎纹组织的情况。

  图12是表示PP-PE纤维和玻璃纤维中的应力与伸长度的关系的曲线图。

  图13是表示第2实施方式的燃料箱的立体图。

  附图标记说明

  1:燃料箱;10:箱主体;11:壁;11a:表皮层;11b:外侧基底层;11c:外侧粘结剂层;11d:阻隔层;11e:内侧粘结剂层;11f:内侧基底层;20、20A:罩部件;21:上罩部;22:下罩部;20a、20b、20c、20d:织片;20c1、20d2:经线;20c2、20d1:纬线;30:线;31:芯材料;32:壳材料。

  具体实施方式

  接着,一边适当参照附图一边对本发明实施方式的燃料箱详细进行说明。下面,以适用于四轮车辆的燃料箱1为例进行说明,但并不限定于四轮车辆,还能够适用于三轮车辆、二轮车辆等各种车辆。

  (第1实施方式)

  图1是表示将第1实施方式所涉及的燃料箱分离为箱主体和罩部件的状态的立体图。

  如图1所示,燃料箱(汽车用燃料箱)1构成为具有储存燃料(汽油等)的箱主体10和对该箱主体10进行强化的罩部件20。另外,燃料箱1被固定安装于未图示的汽车的车体。

  箱主体10例如以外壳形(中空状)而形成为扁平状,且被配置在车辆的底板下方等。另外,在箱主体10的上表面设置有用于安装泵等的泵安装孔10a、用于连接回收内部的燃料蒸汽的软管等的安装孔(未图示)、用于连接未图示的回管(return pipe)的安装孔(未图示)等。另外,在箱主体10的侧表面设置有用于从未图示的注入管来注入燃料的燃料注入口(未图示)。另外,箱主体10例如通过吹塑成型或压片成型等而形成。

  罩部件20构成为具有被配置在箱主体10的上部的上罩部21和被配置在箱主体10的下部的下罩部22。上罩部21以沿箱主体10的上表面的复杂形状的方式而形成。另外,下罩部22以沿箱主体10的下表面的复杂形状的方式而形成。另外,上罩部21和下罩部22在成型箱主体10之前预先通过模具形成为与箱主体10的表面形状相匹配。另外,上罩部21和下罩部22在进行箱主体10成型时被焊接在箱主体10的表面,据此使上罩部21和下罩部22与箱主体10一体化。

  图2是箱主体的壁面的剖面图。

  如图2所示,箱主体10的壁(壁面)11例如从箱外侧向箱内侧依次由表皮层11a、外侧基底层11b、外侧粘结剂层11c、阻隔层11d、内侧粘结剂层11e和内侧基底层11f构成。这样,箱主体10的壁11通过由上述的多层结构构成的合成树脂层(树脂材料)形成。

  另外,箱主体10的壁11在阻隔层11d的内侧形成有内侧主体层(内侧粘结剂层11e、内侧基底层11f),在外侧形成有外侧主体层(表皮层11a、外侧基底层11b、外侧粘结剂层11c)。即,箱主体10的壁11由多层截面结构构成,其中,在所述多层截面结构中,至少由形成箱内表面的内侧热塑性树脂层与形成箱外表面的外侧热塑性树脂层来夹着由燃料的不透过性优良的材质构成的阻隔层11d。

  表皮层11a和外侧基底层11b由耐冲击性大,相对于燃油保持刚性的热塑性合成树脂形成。该热塑性合成树脂例如能够列举聚乙烯树脂、聚酰胺树脂、聚酯树脂。在使表皮层11a为聚乙烯树脂的情况下,优选为由高密度聚乙烯(HDPE;High Density Polyethylene)形成。

  另外,在使外侧基底层11b为聚乙烯树脂的情况下,能够使用再生树脂(RegrindMaterial)。例如,含有高密度聚乙烯(HDPE)作为主要材料的再生树脂可以将在使用后被回收的燃料箱、在制造工序中判定为是不合格产品的燃料箱等粉碎,再循环使用。

  外侧粘结剂层11c被设置于外侧基底层11b与阻隔层11d之间,粘结外侧基底层11b和阻隔层11d。作为该外侧粘结剂层11c所使用的粘结性的合成树脂,例如能够列举改性聚烯烃树脂,尤其优选为是不饱和羧酸改性聚乙烯树脂。

  另外,在本实施方式中,由表皮层11a、外侧基底层11b和外侧粘结剂层11c构成外侧主体层,但并不限定于这样的结构。例如,也可以没有外侧基底层11b和外侧粘结剂层11c,而直接将表皮层11a和阻隔层11d焊接在一起。

  阻隔层11d由燃油的透过极少的热塑性合成树脂形成,例如优选为由乙烯-乙烯醇共聚物树脂(EVOH;Ethylene Vinylalcohol Copolymer)来形成。通过使用乙烯-乙烯醇共聚物树脂(EVOH)作为阻隔层11d,能够提高汽油的防透过性。

  内侧粘结剂层11e被设置于阻隔层11d与内侧基底层11f之间,粘结阻隔层11d和内侧基底层11f。作为该内侧粘结剂层11e所使用的粘结性的合成树脂,与外侧粘结剂层11c同样,例如能够列举改性聚烯烃树脂,尤其是优选为是不饱和羧酸改性聚乙烯树脂。

  内侧基底层11f与表皮层11a同样,由热塑性合成树脂形成。该热塑性刚性树脂例如能够列举聚乙烯树脂、聚酰胺树脂、聚酯树脂。在使内侧基底层11f为聚乙烯树脂的情况下,优选为由高密度聚乙烯(HDPE;High Density Polyethylene)形成。

  图3表示箱主体的位移分布图,(a)是俯视图,(c)是仰视图。另外,在图3中示出箱主体10没有被罩部件20加强的状态。

  另外,当向箱主体10内供给汽油等挥发性高的燃料时,通过从燃料中挥发出的气体产生使箱主体10膨胀的力。在箱主体10的内部,当燃料被消耗时,由于重力的影响而下侧为液体,上侧变为空腔。因此,在箱主体10的内部,通过挥发的气体的压力而受到朝向铅垂方向的上方的力,箱主体10的内部的上表面侧比下表面侧易于膨胀。

  如图3中的(a)所示,在箱主体10的上表面,符号R1所示的区域膨胀最大(位移量(变形量)最大)。另外,区域R2的位移量比区域R1小,区域R3的位移量比区域R2小,区域R4的位移量比区域R3小,区域R5的位移量比区域R4小。

  如图3中的(b)所示,在箱主体10的下表面,符号R8所示的区域的膨胀最小(位移量(变形量)最小)。另外,区域R7的位移量比区域R8大,区域R6的位移量比区域R7大,区域R5的位移量比区域R6大。

  根据这样的结果得知,在燃料箱中,与下表面侧相比,上表面侧变形量大,易于膨胀。

  因此,发明人对使用由线形成的织物来抑制燃料箱的膨胀的必要条件进行了深入研究,其中,所述线由能与箱主体10的表面焊接的含有热塑性树脂的纤维增强复合材料构成。其结果发现以下的4个必要条件很重要。即,该必要条件为(1)单位面积重量、(2)纵向/横向的拉伸性、(3)织物表面的平滑度、(4)线的拉伸性。

  另外,(1)单位面积重量是与罩部件20的刚性有关的必要条件。(2)纵向/横向的拉伸性是与罩部件20对箱主体10的变形抑制有关的必要条件。(3)织物表面的平滑度是与箱主体10和罩部件20的焊接性有关的必要条件。(4)线的拉伸性是与罩部件20的成型性有关的必要条件。下面对4个必要条件详细进行说明。

  首先,对(1)单位面积重量进行说明。图4表示织物的三原组织,(a)是平纹组织,(b)是斜纹组织,(c)是缎纹组织。另外,单位面积重量是指每单位面积的线的重量。例如,单位面积重量越大,则线越被稠密地配置,因此,刚性变高。

  图4中的(a)所示的平纹组织(plain weave)是使经线(warp)和纬线(weft)一根一根地交替交叉的织法。该平纹组织是经线和纬线1:1配置的织法。

  图4中的(b)所示的斜纹组织(twill weave)例如是经线在2根纬线上通过之后在1根纬线的下方穿过的织法。该斜纹组织是经线与纬线交叉的点斜向连续形成的织法。

  图4中的(c)所示的缎纹组织(satin weave)例如是经线在3根以上的纬线上通过之后在1根纬线下穿过的织法。该缎纹组织是经线与纬线交叉的点不相邻的织法。

  这样,在平纹组织中,没有作为坯料的各向异性,因此性能稳定。但是,组织点(经线与纬线交叉的点,以下称为交叉点)多,因此易于产生间隙,每单位体积的刚性变低。另一方面,在缎纹组织中组织点(交叉点)变少,因此单位面积重量增加,刚性变高。但是,相对于成型时的模具摩擦的耐磨性弱,另外组织点(交叉点)少,因此纤维易于解开。另一方面,将斜纹组织定位为平纹组织与缎纹组织的中间的位置。考虑这些方面的结果而得到以下结果:斜纹组织(斜纹组织结构)的单位面积重量比平纹组织的单位面积重量大,能够充分确保刚性,另外,斜纹组织的组织点(交叉点)为2:1,因此有足够满足燃料箱1的必要条件的组织点(交叉点),因此优选采用斜纹组织。

  图5是表示斜纹组织的罩部件的剖视图。

  如图5所示,罩部件20A(20)由单层斜纹组织的织片(sheet)20a和单层斜纹组织的织片20b重叠而构成,是通过将织片20a和织片20b相互焊接而成(以下称为斜纹组织)。换言之,罩部件20A由上层的织片20a和下层的织片20b分开(组合)的2片织物构成。通过将由该织片20a、20b构成的双层的斜纹组织(斜纹组织结构)的罩部件20适用于燃料箱1(参照图1),由于织片20a、20b(变)为多层,因此能够增加单位面积重量,从而作为罩部件20的刚性提高。

  图6是表示斜纹组织的罩部件的变形例的剖视图。

  如图6所示,罩部件20B(20)通过按单层斜纹组织形成的织片20c、20d重叠而构成(以下称为双层斜纹组织)。彼此相向的织片20c(一织片)的经线20c1与织片20d(另一织片)的纬线20d1交叉。另外,彼此相向的织片20d(另一织片)的经线20d2与织片20c(一织片)的纬线20c2交叉。换言之,罩部件20B通过上层的织片20c和下层的织片20d结合(接结)而,由1片织物构成。通过使用这样的多层斜纹组织结构(斜纹组织结构),上下重叠的织片20c、20d彼此通过线的交叉而结合,因此能够获得刚性更高的罩部件20B。

  接着,对(2)纵向/横向的拉伸性进行说明。通过使该罩部件20的纵向/横向的拉伸性变强,能够对抑制燃料箱1的膨胀发挥效果。即,如果罩部件20可伸长,则当箱主体10膨胀时罩部件20也与其相对应地伸长,从而无法抑制燃料箱1的膨胀。因此,罩部件20以在使用燃料箱1时罩部件20不伸长或者难以伸长为必要条件。

  因此,斜纹组织由于组织点(交叉点)多,而分别对纵向(沿经线的方向)和横向(沿纬线的方向)的拉伸具有强的抗拉伸性质(不伸长的性质)。因此,通过使罩部件20为斜纹组织结构,即使产生使箱主体10膨胀的力,也能够抑制箱主体10的膨胀。

  图7是表示罩部件所使用的由纤维增强复合材料构成的线的剖视图。

  如图7所示,线30被构成为:作为芯材料31(纤维)由聚丙烯树脂(PP)构成,作为壳(sheath:护套)材料32(基体树脂)由聚乙烯树脂(PE)构成(由芯材料31和壳材料32形成芯壳结构的结构体),且通过将壳材料32熔化后将多条芯壳结构的结构体构成为一体(线30)。图7所示的状态是1根线(纤维束)的状态。将这条线作为经线或纬线而形成斜纹组织结构的织片,织片被成型为罩部件20。将这样的PP-PE纤维称为PPFRTP(PP Fiber ReinforcedThermo Plastics)。另外,通过将这样的PP-PE纤维作为罩部件20的织片来使用,能够使成型性优异且成本低。

  另外,由含有热塑性树脂的纤维增强复合材料构成的线并不限定于PP-PE纤维,还可以使用用热塑性树脂涂布由玻璃纤维构成的纤维的玻纤增强热塑性塑料(GFRTP)、用热塑性树脂涂布碳纤维的碳纤维增强热塑性塑料(CFRTP)等由其他纤维增强树脂构成的纤维。

  图8是燃料箱的制造工序图。

  首先,使用以沿箱主体10(参照图1)的表面的方式形成的模具(未图示)预先成型罩部件20(上罩部21和下罩部22)。成型罩部件20时的温度条件等按照罩部件20的种类而适当设定。PP-PE纤维的情况下的成型时的温度例如被设定为PE树脂熔化,PP树脂不熔化的温度。

  并且,如图8中的(a)所示,将成型好的罩部件20(上罩部21和下罩部22)固定于吹塑成型模具203内。图8中的(a)所示的装置是对燃料箱1进行吹塑成型的吹塑成型装置200,具有挤出熔融的树脂的挤出机201、连接于挤出机201的挤压模(dies)202、配置于挤压模202的下方的吹塑成型模具203和送出使树脂膨胀的空气的空气供给部204。

  吹塑成型模具203由自由开闭的第1半体203a和第2半体203b构成。第1半体203a、第2半体203b具有设置成型好的罩部件20(上罩部21和下罩部22)的型腔203c、203d。

  另外,如图8中的(b)所示,使从挤出机201挤出的熔融树脂通过挤压模202而形成为筒形的型坯205。然后,使型坯205夹持在吹塑成型模具203的第1半体203a、第2半体203b之间。然后,使空气供给部204的喷嘴伸入型坯205,从空气供给部204向型坯205内供给空气。据此,型坯205膨胀而紧贴罩部件20(上罩部21和下罩部22)的内表面。另外,此时,对罩部件20(上罩部21和下罩部22)进行负压吸引,使罩部件20(上罩部21和下罩部22)紧贴型腔203c、203d。另外,通过型坯205紧贴罩部件20(上罩部21和下罩部22)的内表面,用箱主体10的热使罩部件20的表面(内表面)熔融,将罩部件20和箱主体10焊接在一起。

  然后,对吹塑成型模具203进行冷却来冷却燃料箱1。在箱表面温度达到规定温度以下之后,如图8中的(c)所示,打开吹塑成型模具203的第1半体203a和第2半体203b而取出燃料箱1。另外,在打开吹塑成型模具203之前,停止负压吸引。

  在本实施方式中,使用由线制成(编织成)的罩部件20,其中所述线由含有热塑性树脂的纤维增强复合材料(PPFRTP)构成。据此,构成为:在成型燃料箱1时,罩部件20的表面的树脂(例如,聚乙烯树脂)与箱主体10的表面的树脂(例如,聚乙烯树脂)熔化,罩部件20粘贴在箱主体10的表面。

  另外,箱主体10与罩部件20之间的焊接性以上述的(3)织物表面的平滑度为必要条件。即,当在箱主体10的表面与罩部件20之间存在间隙时,箱主体10与罩部件20之间的接点变少。据此,当罩部件20焊接在箱主体10上时易于产生间隙。其结果,箱主体10与罩部件20的焊接性恶化,罩部件20易于从箱主体10剥离。

  另外,缎纹组织的组织点(交叉点)少,因此在交叉点与交叉点之间易于产生间隙。但是,斜纹组织的组织点(交叉点)比较多,因此,与箱主体10接触的点的密度高。因此,通过使用斜纹组织结构的罩部件20,能够提高箱主体10与罩部件20之间的焊接性。

  图9表示斜纹组织的罩部件的配置,(a)是纤维方向为0°的情况,(b)是纤维方向为45°的情况。另外,如图9中的(a)的多条实线所示,所谓纤维方向为0°是指,表示由PP树脂构成的芯材料31(参照图7)的纤维方向,表示经线(或者纬线)的方向与燃料箱1的前后方向(图示双箭头的方向)一致的情况。另外,如图9中的(b)的多条实线所示,所谓纤维方向为45°是指,表示经线(或者纬线)的方向是相对于燃料箱1的前后方向(图示的双箭头的方向)倾斜45°的方向的情况。

  图9中的(a)所示的纤维方向为0°的情况下的位移量为约16mm。另外,图9中的(b)所示的纤维方向为45°的情况下的位移量为约16mm。这样,得到无论纤维方向为0°还是45°,位移量为大致同等程度的结果。

  另外,由于燃料箱1具有复杂的形状,因此存在在成型罩部件20时由于箱的凹凸而纤维方向混乱的问题。但是,在本实施方式中,通过由斜纹组织来形成罩部件20,相对于纵向和横向的拉伸的抗拉伸性强,因此与纤维方向无关而能够发挥刚性,能够提高生产技术的稳健性。另外,通过使罩部件20为斜纹组织,在成型罩部件20时,可以不考虑纤维方向,因此,罩部件20的制造变得容易。

  图10是表示斜纹组织和变则缎纹组织的情况下的抗剥强度与位移的关系的曲线图。另外,在图10中,实线表示斜纹组织,虚线表示变则缎纹组织。变则缎纹组织是缎纹组织的一种,是不规则地形成组织点(交叉点)的缎纹组织。

  具体而言,将材质与燃料箱1相同(表皮层11a为聚乙烯树脂,参照图2)的材料制成条形来作为试验片(test piece)。将罩部件20的芯壳结构的树脂(芯材料:聚丙烯树脂,壳材料:聚乙烯树脂)分别制成形成为斜纹组织的织片和壳形成为变则缎纹组织的织片。另外,设试验片与织物的焊接条件为180℃×1min(分钟),设试验速度为20mm/min(mm/分钟)。使用拉伸试验机来观察织物与试验片的焊接面的界面分离的有无。

  其结果,如图10的曲线图所示,在斜纹组织的情况下,得到比变则缎纹组织的情况下高的抗剥强度(剥离强度)。另外,在斜纹组织的情况下,发生母材(聚乙烯树脂)的破坏,在变则缎纹组织的情况下发生界面剥离。根据这样的结果确认了:根据织法的不同而焊接强度有差异,且斜纹组织的焊接性比缎纹组织高。

  图11表示确认罩部件的成型性的试验结果,(a)是作为实施方式的双层斜纹组织的情况,(b)是作为比较例的变则缎纹组织的情况。在此,为了确认织物对成型性的影响,使用最深冲压(deepest drawing)的形状的织物,通过压力成型来进行比较。另外,图11中的(a)和(b)的上部是表示成型后的罩部件的上表面整体的照片,是安装于箱主体10之前的状态。另外,图11中的(a)和(b)的下部是箱主体10的周边角部的放大照片。另外,双层斜纹组织是在图6中说明的剖面结构的双层斜纹组织。

  如图11中的(b)的上部所示,在作为比较例的变则缎纹组织的情况下,确认了被虚线圆形包围的区域内的转印性不充分。即,确认了变则缎纹组织的织片没有追随圆形的突起部的形状。另外,如在图11中的(b)的下部中由圆形包围的区域内所示,确认了角部(角R)发生的褶皱多。

  另一方面,如图11中的(a)的上段所示,在作为实施方式的斜纹组织的情况下,确认了由圆形包围的区域内的转印性良好。即,确认了斜纹组织的织片充分地追随圆形的突起部的形状。另外,如在图11(a)的下部由圆形包围的区域内所示,确认了角部(角R)发生的褶皱少。

  根据这些结果,确认了在斜纹组织(双层斜纹组织)的情况下成型性比缎纹组织(变则缎纹组织)的情况下优异。另外,作为在变则缎纹组织中转印性差且在角部发生多的褶皱的原因,认为是由于组织点(交叉点)少,因此在折弯时组织点(交叉点)偏移。因此,在折弯的地方不发生折曲,组织点发生偏移而产生浮起。与此相对,在斜纹组织的情况下,组织点(交叉点)也多,抑制折弯时的组织点(交叉点)偏移,因此,转印性优异且能减少角部褶皱的发生。

  图12是表示PP-PE纤维和玻璃纤维中的应力与伸长度(伸长率)的关系的曲线图。另外,PP-PE纤维是将在由聚丙烯树脂(PP)构成的纤维(连续纤维)上涂布作为基体的聚乙烯树脂(PE)的芯壳结构的结构体多条形成一束来形成为1根线而成。另一方面,玻璃纤维是在玻璃纤维上涂布热硬化性树脂的纤维增强塑料(GFRP)。

  如图12所示,使用拉伸试验机进行试验的结果,玻璃纤维几乎没有伸长,在伸长约2%时折断。另一方面,PP-PE纤维与玻璃纤维相比较在6倍以上的伸长度(伸长率)时折断。根据这样的结果,在PP-PE纤维中,如图12中空心箭头所示,弹性变形域增加。据此,通过对罩部件20适用PP-PE纤维,对复杂形状的燃料箱1的形状的追随性良好。

  这样,需要使构成罩部件20的织片追随复杂形状的箱主体10,所述的(4)线的拉伸性成为必要条件。该线(PP-PE纤维)的伸长大,据此,对箱主体10的表面形状的追随性变好,成型性提高。但是,当PP-PE纤维过度伸长时,反而会损害箱主体10的膨胀抑制效果。因此,在本实施方式中,通过使PP-PE纤维为斜纹组织,能够抑制箱主体10的膨胀。

  另外,PP-PE纤维的壳材料的PE树脂最终熔化,因此,也可以不那么对拉伸性有帮助。根据芯材料的PP树脂的拉伸性强的情况,决定是否能成型为箱形状。PE树脂的熔点比PP树脂低,因此,即使PE树脂熔化,PP树脂也不熔化,据此,能够保留织物结构(斜纹组织结构)作为芯。

  如以上说明的那样,在本实施方式的燃料箱1中具有:箱主体10,其由树脂材料(例如,在表皮层具有聚乙烯树脂的材料)构成;罩部件20,其用线制成,其中所述线由能与箱主体10的表面焊接的含有热塑性树脂的纤维增强复合材料构成。罩部件20至少在与箱主体10的上表面焊接的部位具有斜纹组织结构。据此,由斜纹组织编织成的罩部件20相对于罩部件20的纵向和横向的拉伸具有强的抗拉伸(不伸长)的性质。另外,燃料箱1的上表面是最大程度受到挥发的燃料气体的压力的部位。因此,通过至少在燃料箱1的上表面焊接斜纹组织的罩部件20,燃料箱1的膨胀抑制效果也变得最高。另外,斜纹组织的罩部件20获得大的单位面积重量,表面也平滑,因此,与箱主体10的焊接性优异。

  另外,在本实施方式中,罩部件20中,由斜纹组织形成的织片20a、20b配置有多层,该织片20a、20b被相互焊接(参照图5)。据此,织片20a、20b成为多个层(多层),因此能够增加单位面积重量,作为罩部件20的刚性提高。

  另外,在本实施方式中,在罩部件20中,按单层斜纹组织形成的织片20c、20d呈多层配置来作为斜纹组织,构成彼此相向的一方的织片20c的至少一部分的经线20c1或者纬线20c2与另一方的织片20d的经线20d2或者纬线20d1交叉的多层斜纹组织结构(参照图6)。据此,通过多层斜纹组织结构,重叠的织片20c、20d彼此通过线的交叉(经线20c1与纬线20d1的交叉、纬线20c2与经线20d2的交叉)而结合,因此,能够获得刚性更高的罩部件20。另外,在如所述的织片20a、20b那样上下交叉的情况下,需要分别编织织片20a和织片20b且使二者重叠,工序增加,但在织片20c、20d的情况下,不需要这样的工序,能够减少制造时间和制造成本。

  另外,在本实施方式中,线是在由聚丙烯树脂构成的纤维上涂布聚乙烯树脂的芯壳结构,其中所述线由能与箱主体10的表面焊接的含有热塑性树脂的纤维增强复合材料构成。据此,与作为纤维增强材料而通常使用的玻璃纤维或碳纤维相比较,PP-PE纤维的伸长率(伸长度)高(参照图12)。因此,由PP-PE纤维形成的罩部件20对复杂形状的燃料箱1的形状追随性良好,罩部件20的成型性提高。

  另外,在本实施方式中,箱主体10的表面(表皮层11a)由聚乙烯树脂构成(参照图2)。据此,通过将PE树脂的表皮层11a和PP-PE纤维的罩部件20组合,由同种树脂来进行焊接,因此,焊接性的效率提高。

  (第2实施方式)

  图13是表示第2实施方式的燃料箱的立体图。

  如图13所示,第2实施方式的燃料箱1A将第1实施方式中的罩部件20A的配置限定于上表面侧。其他的结构与第1实施方式同样。罩部件20A与第1实施方式同样,线由斜纹组织结构制成,其中,所述线由能与箱主体10的表面焊接的含有热塑性树脂的纤维增强复合材料(PPFRTP)构成。

  在第2实施方式中,与第1实施方式同样,燃料箱1A的膨胀抑制效果提高。另外,通过使罩部件20A为斜纹组织,能得到大的单位面积重量,表面也平滑,因此与箱主体10的焊接性优异。

  另外,在第2实施方式中,罩部件20A不是覆盖箱主体10的大致整体而配置,而是局部配置,因此能够比第1实施方式廉价地制造罩部件20A。

  另外,在第2实施方式中,列举由单一的织片来构成罩部件20A的情况为例进行了说明,但例如也可以如图3的区域R1、R2所示,将罩部件分割配置。

  以上对本实施方式进行了说明,但本发明并不限定于所述的各实施方式,还能够以各种方式来实施。在第1实施方式中,以由斜纹组织来形成罩部件20整体的情况为例进行了说明,但也可以使箱主体10的变形大的部分为斜纹组织结构,使其他部分为其他织法的织物结构。另外,也可以使箱主体10的变形大的部分为斜纹组织结构,使其他部分为织物以外的结构。

《燃料箱.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)