欢迎光临小豌豆知识网!
当前位置:首页 > 纺织技术 > 织造> 用于制造微通道束热交换器的方法独创技术13540字

用于制造微通道束热交换器的方法

2021-03-04 10:03:36

用于制造微通道束热交换器的方法

  技术领域

  本发明涉及一种用于制造微通道束热交换器的方法。

  背景技术

  在机动车辆中,热交换器例如用于冷却充入空气。这些热交换器通常具有相对大的质量。鉴于机动车辆的能量消耗和行驶性能,因此有利的是,这种热交换器具有尽可能小的重量。

  自未预先公开的德国专利申请DE 10 2017 128 665.9中已知一种微通道束热交换器,该微通道束热交换器具有多个由塑料制成的管状微通道。在运行期间,热介质(例如热的燃烧空气)流经这些管状微通道,而冷却介质(尤其冷却空气或冷却液)围绕这些管状微通道流动,从而可以实现热介质与冷却介质间的热交换。这些管状微通道通常具有0.5mm至2mm的直径并且优选以0.25mm至1.0mm的距离彼此间隔开地布置。为了向微通道束热交换器提供对应的机械稳定性,设置有穿孔的中间板,管状微通道被插入这些中间板中。中间板的孔通过钻孔、激光或者烧结制造而成。在制造微通道束热交换器时,管状微通道被插入到在中间板中形成的孔中并且通过焊接或粘接与中间板材料配合地连接。

  因为这些管状微通道由塑料制成,所以这种微通道束热交换器的突出之处尤其在于小的重量。由于用于制造微通道束热交换器所使用的多个管状微通道(例如最多达10000个微通道),因此该微通道束热交换器具有对应大的热交换器表面。此外,与所谓的鳍片环流相比产生较小的冷却介质压力损失。

  然而,除了这些优点之外,微通道束热交换器也具有一些缺点。微通道束热交换器的制造是完全手动的过程。这意味着所有管状微通道都必须手动地被穿入中间板的孔中。因此,该过程极其耗费时间而且此外还容易出错。此外,产生中间板中的孔同样非常耗费时间,当通过钻孔或者烧结来进行产生时尤其如此。

  发明内容

  本发明的目的在于,提出一种用于制造微通道束热交换器的方法,该方法在本质上更简单并且因此更成本有效。

  这个目的通过具有优选实施方式的特征的用于制造微通道束热交换器的方法来实现。在附图和附图说明中给出本发明的有利改进方案。

  一种根据本发明的用于制造微通道束热交换器的方法,该方法包括以下步骤:

  -提供多个管状微通道,

  -将这些微通道引入编织设备中,

  -在编织设备中将这些管状微通道与多条经线交织,并且产生优选平坦的、由借助这些经线互相连接的管状微通道制成的至少一个热交换器垫,

  -由该至少一个热交换器垫形成至少一个热交换器组,尤其通过折叠和/或卷绕该热交换器垫,以及

  -在该热交换器组的两个彼此相反的端侧处粘合这些管状微通道。

  通过在此提出的方法可以特别简单、精确并且此外还以高自动化程度实现微通道束热交换器的制造。根据本发明的方法的主要优点在于:可以完全省去中间板,迄今为止必须手动地将管状微通道穿入这些中间板中并且随后将其焊接或粘合在该中间板处。由此在制造微通道束热交换器时产生极大的优势,从而可以显著地降低制造成本。因此实现:这种微通道束热交换器可以相对成本有效地在批量产生中制造。优选地,可以在完全自动化的过程中实现微通道束热交换器的制造。通过热交换器组的在两侧的粘合,以有利的方式实现管状微通道的内侧与外侧之间的分离,该分离对于非混合的热交换是必不可少的。原则上,微通道束热交换器可以由一个或多个热交换器组制成。

  在一个优选实施方式中提出:在该编织设备中的编织过程期间,由这些经线双重缠绕这些管状微通道。由此,可以在微通道与经线之间产生特别可靠并且机械稳定的保持连接。

  在一个特别优选的实施方式中可以提出:通过成形(尤其通过折叠和/或通过卷绕)平坦的热交换器垫来产生由这些管状微通道制成的、紧密捆扎的热交换器组。紧实的、紧密捆扎的热交换器组对有效的热交换产生积极的影响。

  在一个有利的实施方式中存在以下可能性:通过浸入环氧树脂粘合剂浴中在该热交换器组的两个彼此相反的端侧粘合该热交换器组的这些管状微通道。因此,将热交换器组在两侧浸入环氧树脂粘合剂浴中,从而可以非常简单地实现粘合并且产生管状微通道的内侧与外侧间的以上已提及的分离,该分离对于非混合的热交换非常重要。

  在一个特别有利的实施方式中提出:使用由塑料、尤其由聚醚醚酮(PEEK)、聚醚酮酮(PEKK)或聚酰亚胺制成的管状微通道。聚酰亚胺例如可以形成为聚琥珀酰亚胺(PSI)和/或聚双马来酰亚胺(PBMI)和/或聚对苯撑苯并二恶唑(PBO)和/或聚酰亚胺磺(PISO)和/或聚甲基丙烯酰亚胺(PMI)和/或形成为具有酰亚胺基团的其他塑料。在制造中,管状微通道例如被挤出成型。当管状微通道由PEEK或PEKK制成时,尤其提出挤出成型。替代性地,管状微通道还可以浸渍成型。优选地,当管状微通道由聚酰亚胺制成时,提出这种制造方法。

  管状微通道还可以由另一种适合的材料制成。因此,在一个替代性的实施方式中例如可以提出:使用由不锈钢制成的管状微通道。这些管状微通道的突出之处尤其在于高的机械稳定性。然而,与由塑料制成的管状微通道相比,这种由不锈钢制成的微通道具有更大的质量。

  特别优选地,使用具有0.3mm与3mm之间、尤其0.5mm与2mm之间的外直径的管状微通道。

  优选地,使用粗细为大约50μm的经线。借助这些经线可以与管状微通道产生有效的保持连接。

  在一个有利的实施方式中提出:将该热交换器组安置在热交换器壳体中。热交换器壳体可以具有至少一个用于热介质的入口和至少一个用于冷却介质的入口。热交换器壳体尤其还可以被设计成使得冷却介质可以大面积地围绕管状微通道流动。

  为了实现该微通道束热交换器(尤其相对壳体)的有效密封,在一个特别有利的实施方式中提出:在粘合这些管状微通道之后,将至少一个径向凹槽在侧向引入该热交换器组的这两个端侧的每个端侧中,在该至少一个径向凹槽中布置密封元件、尤其O形环。优选地,可以将两个彼此平行定向的径向凹槽引入这两个彼此相反的端侧的每个端侧中,其中在这两个凹槽的每个凹槽中布置有密封元件,尤其O形环。

  附图说明

  参照附图借助于以下对优选实施例的描述,本发明的其他特征和优点将变得明显。在附图中:

  图1示出多个管状微通道的透视图,这些管状微通道与经线交织并且从中可以制造微通道束热交换器,

  图2示出平坦的热交换器垫,从中能够形成微通道束热交换器的热交换器组,

  图3示出通过卷起热交换器垫和在两侧粘合而制成的热交换器组,

  图4示出热交换器组的端侧中的一个端侧的详细视图,该端侧具有引入其中的密封元件,

  图5示出安置在热交换器壳体中之后的热交换器的截面,

  图6示出以圆形通道构造形式实施的热交换器的截面图示,该热交换器尤其被设置成用于冷却充入空气。

  具体实施方式

  为了制造微通道束热交换器1,首先提供多个管状微通道2。这些管状微通道2优选由柔性且弹性的塑料材料制成。由此可以特别重量优化地设计微通道束热交换器1。适合的塑料尤其为聚醚醚酮、聚醚酮酮或聚酰亚胺。聚酰亚胺例如可以形成为聚琥珀酰亚胺(PSI)和/或聚双马来酰亚胺(PBMI)和/或聚对苯撑苯并二恶唑(PBO)和/或聚酰亚胺磺(PISO)和/或聚甲基丙烯酰亚胺(PMI)和/或形成为具有酰亚胺基团的其他塑料。在制造微通道束热交换器1时,管状微通道2例如被挤出成型。当管状微通道由PEEK或PEKK制成时,尤其提出挤出成型。替代性地,管状微通道还可以浸渍成型。优选地,当管状微通道2由聚酰亚胺制成时,提出这种制造方法。替代性地,管状微通道2还可以由不锈钢制成。然而,与管状微通道2由塑料制成的微通道束热交换器1相比,管状微通道2由不锈钢制成的微通道束热交换器1具有更大的质量。

  优选地,使用具有0.3mm与3mm之间、尤其0.5mm与2mm之间的外直径的管状微通道2。针对微通道束热交换器1的制造,例如可以(尤其根据管状微通道2的直径)提供几百个管状微通道2。原则上,可以实现具有多于1000个管状微通道2的微通道束热交换器1的设计方案。

  将管状微通道2引入编织设备中,尤其夹紧在该编织设备中,并且借助该编织设备与多条经线3交织。优选地,在这个编织过程中,在两侧由经线3缠绕管状微通道2。图1示出多个管状微通道2的放大图示,这些管状微通道在两侧被经线3缠绕。优选地,针对该编织过程,在该编织设备中使用粗细为大约50μm的经线3。由此,在管状微通道2与经线3之间产生稳定的保持连接。以这种方式从借助经线3互相连接的管状微通道2获得平坦的热交换器垫4,如其在图2中示例性所示。

  在另外参照图3的情况下,可以在接下来的成形过程中(尤其通过折叠和/或卷绕)由热交换器垫4形成热交换器组8。例如可以尽可能紧密地卷绕平坦的热交换器垫4(如图3所示),从而产生由管状微通道2制成的、紧密捆扎的(尤其圆形的)热交换器组8。以这种方式获得的热交换器组8以其彼此相反的端侧9、10并且因此在两侧被浸入环氧树脂粘合剂浴中。由此,获得热交换器组8在两个端侧侧的粘合部,这些粘合部使管状微通道2保持在一起。此外,以这种方式还产生管状微通道2的内侧与外侧之间的分离,该分离对于非混合的热交换特别重要。此外,还重要的是管状微通道2彼此间的几何间距,这些几何间距被选择成使得可以实现从热介质到冷却介质的有效的热传递。热介质的流动方向已在图3中由箭头11标识。因此,在微通道束热交换器1运行期间,热介质流经管状微通道2。冷却介质的流入在侧向进行。该流入同样已在图3中由箭头12标识。原则上也可以的是:冷却介质流动穿过管状微通道2,而相反地热介质的流入在侧向进行。

  在粘合部固化后,将两个径向凹槽6a、6b在侧向引入这两个彼此相反的端侧9、10的每个端侧中,将密封元件分别插入这些径向凹槽中。图4示出端侧9,该端侧具有引入其中的径向凹槽6a、6b以及布置在这些凹槽中的密封元件,这些密封元件在这里形成为O形环7a、7b。这些O形环7a、7b用于以下目的:在安置于热交换器壳体5中之后使微通道束热交换器1相对于该热交换器壳体有效地密封。

  图5示出微通道束热交换器1,该微通道束热交换器被安置在热交换装置100的热交换器壳体5中。热交换器壳体5具有用于热介质的第一入口50和用于冷却介质的第二入口51。在热交换装置100运行期间,经过第二入口51流入的冷却介质流经微通道束热交换器1的管状微通道2,经过第一入口50流入的热介质围绕这些管状微通道流动。该流动也可以以相反的方式进行,其方式为:热介质经过第二入口51流入而冷却介质经过第一入口50流入。然后,冷却介质围绕管状微通道2流动,热介质流经这些管状微通道。

  原则上,借助于以上述方式编织后的热交换器垫4和由此成形的热交换器组8几乎可以(尤其通过卷绕和/或折叠)制造任意的微通道束热交换器1。在此,微通道束热交换器1可以由一个或替代性地由多个热交换器组8制成。

  图6示例性示出以圆形通道构造形式实施的微通道束热交换器1的截面图示,该微通道束热交换器尤其被设置成用于冷却充入空气。热的充入空气居中地流入形成为圆形的、空心圆柱体形的微通道束热交换器1中。由多个热交换器组8获得圆形的、空心圆柱体的形状,这些热交换器组由上述类型的卷绕的热交换器垫4制成。经加热的充入空气径向地流经微通道束热交换器1的热交换器组8,冷却介质流经这些热交换器组的管状微通道2。

  尤其,通过逐个地依次折叠经编织的热交换器垫4也可以制造矩形成形的微通道束热交换器1,这些微通道束热交换器例如用作机动车辆中的常规冷却剂-空气前冷却器的轻质结构替代品。

《用于制造微通道束热交换器的方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)