欢迎光临小豌豆知识网!
当前位置:首页 > 纺织技术 > 天然纤维> 一种燃料电池用碱性阴离子交换复合膜的制备方法独创技术19679字

一种燃料电池用碱性阴离子交换复合膜的制备方法

2021-02-22 20:27:29

一种燃料电池用碱性阴离子交换复合膜的制备方法

  技术领域

  本发明属于燃料电池复合膜制备技术领域,具体涉及一种燃料电池用碱性阴离子交换复合膜的制备方法。

  背景技术

  利用多种聚合物共混,进而浇铸成膜,以期在膜内形成复杂网络型结构,这是一种制备低温燃料电池隔膜的方法。然而,相容性较差的聚合物之间往往容易出现严重的相分离现象,造成膜内孔隙过大,电学性能与机械性能相对较差;而相容性较好的聚合物之间往往形成均相结构,难以形成供离子传输用的狭窄通道,导致电学性能不尽如人意。

  因此,如何制备一种导电性能和耐用性均良好的膜电池材料是有待解决的技术问题。

  发明内容

  本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。

  鉴于上述的技术缺陷,提出了本发明。

  因此,作为本发明其中一个方面,本发明克服现有技术中存在的不足,提供一种燃料电池用碱性阴离子交换复合膜的制备方法。

  为解决上述技术问题,本发明提供了如下技术方案:一种燃料电池用碱性阴离子交换复合膜的制备方法,其包括,

  共混液的制备:配制PVA水溶液,脱泡处理,将PVA水溶液与PAADDA水溶液混合,于室温下搅拌,再滴加CMPEI水溶液,在常温条件下,继续搅拌;

  静电纺丝制膜:利用静电纺丝机将PVA与PAADDA、CMPEI的共混溶液制成静电纺丝膜;

  交联处理:配制戊二醇溶液,并加入一滴浓盐酸,将所述静电纺丝膜浸没在戊二醇溶液中,将静电纺丝膜取出,擦拭静电纺丝膜表面液体,干燥,得到阴离子交换复合导电膜。

  作为本发明所述的燃料电池用碱性阴离子交换复合膜的制备方法的一种优选方案:所述共混液的制备,为配制10%的PVA水溶液,脱泡处理,将10%的PVA水溶液与10%的PAADDA水溶液混合,于室温下搅拌12h,再滴加10%的CMPEI水溶液,在常温条件下,继续搅拌24h其中,PVA、CMPEI与PAADDA按1:0.25:(0.2~0.3)的质量比进行共混。

  作为本发明所述的燃料电池用碱性阴离子交换复合膜的制备方法的一种优选方案:PVA、CMPEI与PAADDA按1:0.25:0.25的质量比进行共混。

  作为本发明所述的燃料电池用碱性阴离子交换复合膜的制备方法的一种优选方案:所述静电纺丝,其在15.5~17.5KV的静电压,2~12cm的接受距离,推进速度0.8mL/h的条件下进行静电纺丝。

  作为本发明所述的燃料电池用碱性阴离子交换复合膜的制备方法的一种优选方案:所述交联处理,戊二醇的质量浓度为3%,所述浸没,时间为20~30min。

  作为本发明所述的燃料电池用碱性阴离子交换复合膜的制备方法的一种优选方案:所述CMPEI,其制备方法为,配制100mL浓度为10g/L的PEI水溶液,滴加1.22g环氧丙烷,半小时内滴加完毕,在0~3℃冰水浴中搅拌反应6h,旋转蒸发仪蒸出过量环氧丙烷得到PEI的叔胺化产物;将100mL浓度为8g/L的PEI的叔胺化产物溶液加入到250mL的三口烧瓶中,加入0.21g氯化苄,恒温50℃搅拌反应10h,反应结束后,产物混合液分层;用乙醚萃取水相溶液,得到阳离子化PEI的水溶液,在阳离子化PEI的水溶液中加入丙酮,析出沉淀,得到黄棕色胶状固体,用乙醇、丙酮洗涤,于40℃下真空干燥得到产物CMPEI。

  本发明的有益效果:本发明采用静电纺丝工艺,将1799型聚乙烯醇(PVA)配制成10%浓度的溶液,并与10%的聚丙烯酰胺-二甲基二烯丙基氯化铵(PAADDA)溶液及10%的阳离子化聚乙烯亚胺(CMPEI)溶液按一定质量比进行共混处理,使其在15.5~17.5KV的静电压,2~12cm的接受距离的条件下进行静电纺丝成膜。研究结果表明纺丝纤维直径在150~600nm之间,静电纺丝膜含水率可达106.3%,其电导率达2.5×10-2S·cm-1。将所得静电纺丝膜利用3%的戊二醇交联处理,再将其浸泡于30%双氧水中48小时,测得其失重率为29.6%。

  附图说明

  为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:

  图1为静电纺丝阴离子交换复合膜的红外光谱。

  图2为PVA/PAADDA/CMPEI溶液共混纺丝膜扫描电镜图。

  图3为PVA/PAADDA/CMPEI溶液按质量比1:0.25:0.25共混纺丝膜的能谱分析图。

  图4为PVA/PAADDA/CMPEI(1:0.25:0.25)复合膜的耐氧化稳定性。

  图5为PVA/PAADDA/CMPEI(1:0.25:0.25)的发电功率曲线。

  具体实施方式

  为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施例对本发明的具体实施方式做详细的说明。

  在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。

  其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。

  CMPEI的制备:配制100mLPEI(PEI分子量10000)的水溶液(浓度10g/L)加入250mL的三口烧瓶中,再用滴液漏斗滴加1.22g环氧丙烷,半小时内滴加完毕,在0~3℃冰水浴中不断搅拌反应6h。反应结束后,用旋转蒸发仪蒸出过量环氧丙烷即得PEI的叔胺化产物;将100mLPEI的叔胺化产物溶液(浓度8g/L)加入到250mL的三口烧瓶中,加入0.21g氯化苄,恒温50℃搅拌反应10h,反应结束后,产物混合液分层;分离后用乙醚萃取水相溶液,以去除残留的氯化苄,得到阳离子化PEI的水溶液,溶液中加入丙酮,析出沉淀,得到黄棕色胶状固体,用乙醇、丙酮洗涤,于40℃下真空干燥得到最终产物CMPEI。

  

  共混液的制备:利用电子天平称取10g PVA(PVA聚合度1800)粉末,量取100mL去离子水,将两者混合于烧杯中,在其中放入大小合适的搅拌子,并封好保鲜膜,贴上标签,在90摄氏度的温度条件下,搅拌4小时,制得质量分数为10%的PVA溶液,然后通过利用SDZF-6050型真空干燥箱对其进行脱泡处理。取一定量的PVA溶液与一定量的10%PAADDA(PAADDA分子量70000)水溶液先于室温下磁力搅拌12小时,再向共混液中滴加一定量的10%CMPEI水溶液,在常温条件下,继续搅拌24小时,使得三种溶液能够充分混合。PVA、PAADDA、CMPEI三者混合质量比分别配制为:1:0.25:0.15、1:0.25:0.2、1:0.25:0.25、1:0.25:0.3、1:0.25:0.35。

  

  静电纺丝制膜:利用静电纺丝机将PVA与PAADDA、CMPEI的共混溶液制成膜,制备方法为:静电纺丝机器接通电源,进行复位操作,将溶液吸进针筒中,并按压以排除空气,使针头处出现溶液,然后将针筒夹持在喂液装置上,调整喂液泵到达合适的位置。将正高压电源连接到注射器,将负高压电源连接到接收板,打开高压电源,慢慢观察出丝情况及喷丝的稳定性,通过旋转加减压旋钮以调整电压,并相应调整接收距离,使其进行稳定连续的纺丝,喷丝一定时间后关闭高压电源,等待一分钟左右,将试样样品取出,关闭机器,得到静电纺丝膜。

  交联处理:配制3%戊二醇,并加入一滴浓盐酸,将所述静电纺丝膜浸没在3%戊二醇溶液中,戊二醇与PVA上的羟基及CMPEI上未阳离子化改性的氨基发生缩醛反应与席夫碱反应,在大分子链间形成化学交联,形成致密复杂的三维网络,将阳离子组份固着或夹持膜内,浸没时间为30分钟,紧接着将静电纺丝膜取出,用纸擦拭膜表面液体,再静置风干一段时间至其完全干燥,得到阴离子交换复合导电膜。

  性能表征:傅立叶红外光谱分析(IR):采用由美国NICOLET公司的NEXUS-670傅立叶变换红外光谱(FTIR)仪器测定。

  扫描电镜(SEM)+能谱分析(EDX):使用由美国EFI公司的Nova Nnano SEM 450场扫描电子显微镜(EESEM)观察样品的表面形态,并进行表面元素分析。

  电导率:电导率测试使用的是交流阻抗法,通过采用小幅度交流信号扰动电解池,并观察体系在稳态时对扰动的跟随情况。首先将静电纺丝膜裁剪成2×2cm,并测量膜的厚度。然后通过电化学工作站,扰动电压振幅为50mV,扫描频率范围为1MHz到0.1Hz。将充分水化的待测膜材料夹在两个表面镀上铂黑的铂电极之间,用两块聚四氟乙烯模块起支持、绝缘作用,连接电化学工作站测量其阻抗值。最后通过公式σ=1/RT(R代表电阻值,T代表膜的厚度)计算膜的电导率。

  直径大小:利用HD002C型纤维细度分析仪测试静电纺丝膜的纤维直径大小。

  耐氧化稳定性:室温下,将膜浸泡于30%双氧水水溶液中,记录膜质量随时间的变化情况。按公式:质量保留率=(处理后质量)/原重×100%,评价其耐氧化稳定性能。

  含水率:膜的溶胀性可用其含水率(WU,单位g g-1)来间接表征,室温下将膜浸于蒸馏水中24h,取出后用滤纸拭去膜表面的水份,于精密电子天平上称得其湿重Wwet,然后将膜置于真空烘箱中于100℃下干燥至恒重,称得其干重Wdry,膜的含水率WU可根据下式计算得到:WU=(Wwet-Wdry)/Wdry

  单电池性能测试:将40%Pt/C催化剂、5wt.%Nafion溶液及异丙醇溶剂混合配制成悬浊液,超声处理4h得到催化剂溶液。将催化剂均匀地喷涂在碳纸(Toray TGP-H-090,日本)上,使阳极载量为2mg cm-2,阴极载量为1mg cm-2,在碳纸有催化剂的一侧滴上粘结剂,使载量为0.6-1.0mg cm-2,晾干。将膜置于两张碳纸中间,有催化剂的一面与膜材料相接触,在110℃、100kg cm-2条件下热压5分钟以制得MEA(有效面积为4cm2)。将MEA置于两块带有气流通道的石墨板之间,组装成单电池。利用GE/FC1-100燃料电池工作平台测试MEA的电池性能。测试条件为:25℃、常压、H2流量100mL min-1,O2流量70mL min-1。

  实验结果:

  红外分析(IR):图1为PVA/PAADDA/CMPEI(1:0.25:0.25)复合膜的红外光谱。波数在3300-3500cm-1处的宽峰来源于O-H与N-H的伸缩振动,由膜内PVA的羟基、CMPEI的胺基及结合水分引起。2941和2870cm-1处为饱和C-H的伸缩振动。1668cm-1处的峰应由PAADDA中丙烯酰胺单元中的C=O所引起,而1566cm-1处的峰则归属于PAADDA与CMPEI中C-N的伸缩振动,1101cm-1、1134cm-1、999cm-1处为典型的C-O及C-O-C吸收峰,以上数据说明PAADDA、CMPEI成功混入PVA基体中。

  扫描电镜(SEM)+能谱分析(EDX):从图2可知,图2a是PVA/PAADDA/CMPEI(1:0.25:0.15)静电纺丝复合膜放大25000倍的条件下观察到的图像,图2b是PVA/PAADDA/CMPEI(1:0.25:0.35)静电纺丝复合膜放大40000倍的条件下观察到的图像。PVA溶液与PAADDA溶液、CMPEI溶液按一定质量比共混后,在进行静电纺丝成膜,由图可知随着CMPEI含量的增加,纤维的平均直径有所下降,其一可能是由于CMPEI带电荷,受电场力作用,纤维更易拉伸,其细度均匀性更好,并且粘结现象明显变少,整个纤维的成膜效果更加理想化;其二是CMPEI比重越大,其与PVA大分子链堆积形成的大分子束的紧密程度会有所下降,尽管三者都是线性大分子结构,但它们的分子构象的差异性以及空间位阻会影响其结合的紧密性。从图3可以看出各元素的含量,其中C、O来源于PVA、PAADDA和CMPEI,而N、Cl则源自PAADDA及CMPEI,进一步证实三者完全融合在一起。

  各元素含量

  静电纺丝工艺参数对纤维直径的影响

  接收距离对纤维直径的影响:固定质量分数为10%的PVA溶液、CMPEI溶液与PAADDA溶液按1:0.25:0.25的质量比进行共混,电压:17.35KV,推进速度0.8mL/h,分别在接收距离2cm、6cm、12cm的条件下进行纺丝,所得结果如表1所示。纤维直径随着接收距离增加而减少,究其原因,如果接收距离太小,则会导致溶液在到达接收表面之前被拉入光纤。从而有较多的水雾,会使得纤维交织在一起;随着接收距离的增加,从导线到接收表面的时间变得更长,拉伸和折叠的机会更多,这使得单丝更纤细,但是当距离过远时,会导致纺丝的不均匀现象加剧。

  表1不同接收距离对纤维直径的影响

  不同电压对纤维直径的影响:固定质量分数为10%的PVA溶液、CMPEI溶液与PAADDA溶液按1:0.25:0.25的质量比进行共混,推进速度0.8mL/h,接收距离为12cm,分别在电压为15.87KV,16.31KV,17.35KV的条件下进行纺丝,所得结果如表2所示。从数据来看,纤维直径随电压的增加而增加。这是因为电压越大,电场力越大,对纤维的拉伸力越高,因而纤维越细,但电压过高,也易导致纤维易断,长纤维占比较小,对其耐用性能有负面影响。在静电纺丝过程中,静电压是非常重要的一个影响因素,对纤维的稳定性有重要意义。

  表2不同电压对纤维直径的影响

  固定电压为17.35KV,推进速度0.8mL/h,接收距离为12cm,分别在质量分数为10%的PVA溶液、PAADDA溶液、CMPEI溶液按1:0.25:0.15、1:0.25:0.25、1:0.25:0.35的质量比进行共混的条件下进行纺丝,所得结果如表3所示。可以看出随着质量比的减少,对应的CMPEI所占的比重越多,那么用该共混液纺出的纤维直径也就会变小。其一可能是由于CMPEI电荷比重大,受电场力作用,纤维更易拉伸,其细度均匀性更好,并且粘结现象明显变少,整个纤维的成膜效果更加理想化;其二是CMPEI比重越大,其与PVA及PAADDA大分子链堆积形成的大分子束的紧密程度会有所下降,尽管三者都是线性大分子结构,但它们的之间存在电荷互斥现象,而且分子构象的差异性以及空间位阻会影响其结合的紧密性。

  表3不同质量比的共混溶液对纤维直径的影响

  

  PVA/PAADDA/CMPEI共混溶液不同配比对电导率与含水率的影响:载流子浓度和载流子迁移率是影响膜电导率的两个关键因素。一方面,电导率会随着膜内载流子浓度的变大而提高,另一方面又会随着膜内载流子的迁移率加快而提高。PVA/PAADDA/CMPEI共混溶液不同配比对膜内可传输离子的活性基团数、微细结构及含水量有很大的影响。表4给出了PVA/PAADDA/CMPEI静电纺丝碱性阴离子交换复合膜的电导率与含水率数据。从表中可以看出,随着CMPEI含量的增加,其电导率与含水率整体呈上升趋势,但CMPEI含量上升到一定程度,虽然含水率继续上升,但电导率呈现平缓状态。这是因为含水率的提高不仅会使载流子迁移率加快,同时也会稀释载流子的浓度。因此可以看出,虽然质量比为1:0.25:0.35的PVA/PAADDA/CMPEI阴离子膜比其它膜有更多的阳离子基团,但同时其含水率也很高,也就使得电导率并没有很突出。从而可见,如果能很好的控制住PVA/PAADDA/CMPEI膜的溶胀问题,那么其可成为很有潜力的燃料电池用碱性阴离子交换复合膜。

  表4不同质量比的PVA/PAADDA/CMPEI共混溶液对电导率及含水率的影响

  

  耐氧化稳定性:将膜室温下浸泡在浓度为30wt%的双氧水溶液中,不同时间后取出,烘干后测量其质量,以评价膜的耐氧化性能。未交联静电纺丝PVA/PAADDA/CMPEI(1:0.25:0.25)膜在H2O2(30wt%)溶液中浸泡48h,仅剩原重的47.35wt%。这可能是因为高浓度的H2O2产生了大量的活性自由基(HO2·,HO·)和活性氧[O],它们可以与PVA大分链上的亚甲基基团发生反应,导致主链的氧化分解。交联后的静电纺丝PVA/PAADDA/CMPEI(1:0.25:0.25)膜其耐氧化稳定性的测试数据如图4所示,表现出较好的抗氧性,质量保留率达到70.4%。这可能是归功于交联后膜内三维网络的形成可以有效的阻碣和延缓·OH和·OOH自由基的进攻,因此增强了膜的耐氧化能力。

  单电池发电性能:以静电纺丝PVA/PAADDA/CMPEI(1:0.25:0.25)膜为例制作膜电极,将其应用于H2/O2燃料电池中,考察它在室温下的发电能力。从图中可以看出,PVA/PAADDA/CMPEI膜在电流密度为72.4mA cm-2时具有最高功率密度为33.9mW cm-2,其开路电压为963.2mV。

  用静电纺丝方法制备PVA/PAADDA/CMPEI离子交换膜;PVA是主要基体材料,PAADDA与CMPEI均为载荷体。一方面PAADDA与PVA相容性好,有利于静电纺丝,但由于阳电荷占比相对较小,电性能提高困难,同时,两者易形成大分子链抱团成束现象,造成纤维过粗,对膜微细结构的形成不利,因此加入高度电荷化的、可以充分电荷互斥的CMPEI。如果完全加CMPEI而不加PAADDA,一是膜亲水性过高,喷丝时带水严重,难以堆积成膜;二是CMPEI分子量较小,其与PVA共混难以形成均质结构,其耐用性能较低,同时电荷的传输通道也可能出现中断现象。

  本发明采用静电纺丝工艺,将1799型聚乙烯醇(PVA)配制成10%浓度的溶液,并与10%的聚丙烯酰胺-二甲基二烯丙基氯化铵(PAADDA)溶液及10%的阳离子化聚乙烯亚胺(CMPEI)溶液按一定质量比进行共混处理,使其在15.5~17.5KV的静电压,2~12cm的接受距离的条件下进行静电纺丝成膜。研究结果表明纺丝纤维直径在150~600nm之间,静电纺丝膜含水率可达106.3%,其电导率达2.5×10-2S·cm-1。将所得静电纺丝膜利用3%的戊二醇交联处理,再将其浸泡于30%双氧水中48小时,测得其失重率为29.6%。

  应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

《一种燃料电池用碱性阴离子交换复合膜的制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)