欢迎光临小豌豆知识网!
当前位置:首页 > 纺织技术 > 编织制作> 一种耐辐照陶瓷纤维绝热复合材料及其制备方法独创技术13588字

一种耐辐照陶瓷纤维绝热复合材料及其制备方法

2021-02-15 11:12:49

一种耐辐照陶瓷纤维绝热复合材料及其制备方法

  技术领域

  本发明涉及绝热材料领域,具体涉及一种耐辐照陶瓷纤维绝热复合材料及其制备方法。

  背景技术

  为减少舰船、核电站等军民装备设施工作过程中的散热损失,提高热效率,防止工作人员烫伤,保证电器设备、仪表等安全可靠工作;或防止表面温度较低的设备和管道产生凝露,必须对装备设施的部分高温或低温设备及管道包覆绝热材料。目前,国内外应用于军民装备设施的非金属绝热材料主要包括玻璃棉、岩棉等无机纤维类材料。文献[段晨,国占东,白宗良等.舰船用隔热绝缘材料研究现状[J].舰船科学技术,2016,38(10):1-6.]指出,无机纤维类绝热材料存在导热系数较高导致隔热性能降低,易吸潮造成纤维材料粉化失效,残留物的高腐蚀性会造成使用安全隐患等问题,严重影响军民装备设施技术性能的充分发挥。

  发明内容

  为了解决无机纤维类绝热材料应用于军民装备设施的问题,本发明的目的在于提供一种耐辐照陶瓷纤维绝热复合材料,该材料可应用于高剂量核辐照环境下的军民装备设施,具有超低导热系数、超低吸湿率、超高憎水率的特点,并且不会对奥氏体不锈钢产生腐蚀,可以很好的解决现有无机纤维类材料存在的导热系数较高、易吸潮、高腐蚀性等问题,更好的保障军民装备设施技术性能的充分发挥。

  除特殊说明外,本发明所述份数均为重量份,所述百分比均为质量百分比,所述浓度为质量百分比浓度。

  本发明的目的是这样实现的:

  一种耐辐照陶瓷纤维,其特征在于:所述耐辐照陶瓷纤维由如下原料制成:SiO2:55~65%,Al2O3:10~15%,CaO:20~25%,MgO:0~5%,Li2O:0~0.1%,B2O3:0~0.05%,余者为不可避免的杂质,所述百分比为质量百分比。

  本发明耐辐照陶瓷纤维是由包含SiO2、Al2O3、CaO、MgO、Li2O、B2O3和不可避免的杂质形成的原料烧制成陶瓷,然后制成耐辐照陶瓷纤维。本发明制备耐辐照陶瓷纤维的原料SiO2、Al2O3、CaO、MgO、Li2O、B2O3和不可避免的杂质总量为100%。

  一种耐辐照陶瓷纤维绝热复合材料,以上述耐辐照陶瓷纤维制成的针刺毡为增强相,采用凝胶成型工艺制得。

  本发明还提供上述耐辐照陶瓷纤维绝热复合材料的制备方法,该方法操作简单,不需要大型工业设备,适合工业化生产。

  本发明耐辐照陶瓷纤维绝热复合材料的制备方法,其特征在于,采用如下步骤:采用通用的坩埚或池窑拉制耐辐照陶瓷,形成单丝直径为9μm~13μm的耐辐照陶瓷纤维丝束,通过对耐辐照陶瓷纤维丝束进行短切、定量铺料、梳理、成网、针刺工艺形成耐辐照陶瓷纤维针刺毡;然后以耐辐照陶瓷纤维针刺毡为增强相,采用凝胶成型工艺制备耐辐照陶瓷纤维绝热复合材料。

  上述方法中所述耐辐照陶瓷纤维针刺毡的厚度为3mm~6mm,容重为100kg/m3~115kg/m3。

  上述方法中,所述凝胶成型工艺包括以下步骤:

  (1)以Na2SiO3为先驱体,C2H5OH为溶剂,H2SO4为催化剂,将Na2SiO3与C2H5OH混合并搅拌,向搅拌中的混合液加入去离子水和H2SO4,静置,待Na2SiO3充分水解后形成SiO2溶胶;

  (2)用模具对耐辐照陶瓷纤维针刺毡进行固形,然后通过抽真空浸渍SiO2溶胶,封口保存;

  (3)对SiO2溶胶经过缩聚反应形成的凝胶进行老化处理,老化过程中发生缩合、粗化,促进凝胶的进一步交联,增强凝胶的骨架强度,使凝胶网络结构继续长大,老化在乙醇环境中进行,老化时间1-2天;

  (4)采用低表面张力的三甲基氯硅烷(TMCS)或六甲基二硅醚(HMDSO)作为表面修饰剂对表面张力较大的C2H5OH进行替换,最后去除表面修饰剂后制成厚度为3mm~6mm的耐辐照陶瓷纤维绝热复合材料。

  具体的说,一种耐辐照陶瓷纤维绝热复合材料的制备方法,其特征在于:所述耐辐照陶瓷纤维由如下原料制成:SiO2:55~65%,Al2O3:10~15%,CaO:20~25%,MgO:0~5%,Li2O:0~0.1%,B2O3:0~0.05%,余者为不可避免的杂质,所述百分比为质量百分比;

  制备工艺为:采用通用的坩埚或池窑拉制耐辐照陶瓷,形成单丝直径为9μm~13μm的耐辐照陶瓷纤维丝束,通过对耐辐照陶瓷纤维丝束进行短切、定量铺料、梳理、成网、针刺工艺形成耐辐照陶瓷纤维针刺毡;所述耐辐照陶瓷纤维针刺毡的厚度为3mm~6mm,容重为100kg/m3~115kg/m3;然后以耐辐照陶瓷纤维针刺毡为增强相,采用凝胶成型工艺制备耐辐照陶瓷纤维绝热复合材料;所述凝胶成型工艺包括以下步骤:

  (1)以Na2SiO3为先驱体,C2H5OH为溶剂,H2SO4为催化剂,将Na2SiO3与C2H5OH混合并搅拌,向搅拌中的混合液加入去离子水和H2SO4,静置,待Na2SiO3充分水解后形成SiO2溶胶;

  (2)用模具对耐辐照陶瓷纤维针刺毡进行固形,然后通过抽真空浸渍SiO2溶胶,封口保存;

  (3)对SiO2溶胶经过缩聚反应形成的凝胶进行老化处理,老化过程中发生缩合、粗化,促进凝胶的进一步交联,增强凝胶的骨架强度,使凝胶网络结构继续长大,老化在乙醇环境中进行,老化时间1-2天;

  (4)采用低表面张力的三甲基氯硅烷(TMCS)或六甲基二硅醚(HMDSO)作为表面修饰剂对表面张力较大的C2H5OH进行替换,最后去除表面修饰剂后制成厚度为3mm~6mm的耐辐照陶瓷纤维绝热复合材料。

  有益效果:

  本发明针对目前舰船、核电站等军民装备设施用玻璃棉、岩棉等无机纤维类绝热材料存在的导热系数较高、易吸潮、高腐蚀性等问题,开发出了一种具有超低导热系数、低吸湿、高憎水的耐辐照陶瓷纤维绝热复合材料。本发明耐辐照陶瓷纤维绝热复合材料承受1.0×107Gy以上剂量γ射线辐照后,不发生明显的脆化、粉化、收缩等现象。本发明材料成分中,严格控制Li2O、B2O3等对热中子有很大俘获截面的氧化物含量,具有良好的耐中子辐照性能。本发明对奥氏体不锈钢无腐蚀,可溶出离子含量和浸出液pH值满足GB/T 17393要求,不会对奥氏体不锈钢造成应力腐蚀开裂。本发明耐辐照陶瓷纤维绝热复合材料常温(25℃)导热系数可从无机纤维类绝热材料的(0.04~0.05)W·m-1·K-1降至0.016W·m-1·K-1以下,平均200℃导热系数不大于0.024W·m-1·K-1,质量吸湿率不大于0.3%,憎水率不小于99.5%,适用于高剂量核辐照环境下的舰船、核电站等军民装备设施的高效绝热,更好的保障军民装备设施技术性能的充分发挥。

  附图说明

  图1是本发明耐辐照陶瓷纤维绝热复合材料制备工艺过程图。

  具体实施方式

  下面通过具体实施例对本发明进行具体描述,在此指出以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术熟练人员可以根据上述发明内容对本发明作出一些非本质的改进和调整。本发明耐辐照陶瓷纤维绝热复合材料制备主要工艺过程见图1。

  本发明耐辐照陶瓷纤维绝热复合材料性能测试方法为:

  耐辐照性能:通过Co-60γ射线辐照装置对复合材料进行耐辐照性能考核,将样品固定放置在预算过的辐照大厅的某一位置上,在样品表面放置CTA薄膜剂量计,辐照一定时间后,将剂量计取下,测试各部位的辐照剂量率,并计算所需要的辐照时间,累积剂量达到1.0×107Gy后观察样品的脆化、粉化和收缩情况,详细试验过程参考NB/T 20133.3-2012。

  对奥氏体不锈钢的腐蚀试验

  a)可溶出离子:复合材料中可溶出氯化物、氟化物、硅酸盐及钠离子含量应符合表1规定,各离子含量测试方法见JC/T 618。

  表1对可溶出氯离子和氟离子含量的要求

  

  b)浸出液pH值:复合材料浸出液的pH值,在25℃时应为7.0~11.7,具体试验方法见GB/T 17393附录B。

  对奥氏体不锈钢应力腐蚀开裂的影响:将样品制作出4个102mm×89mm×38mm的带有弧形凹槽的试样,包覆在不锈钢试件上,同时安装在试验装置上,于操作温度(99℃)下用去离子水进行28d滴注试验,去离子水的流速控制在250mL/d,具体试验方法及判定规则见GB/T 17393附录A。

  导热系数:将样品放入导热系数测试仪中,冷热面分别设置为15℃和35℃,测出通过试样的加热功率后,求出样品在平均温度25℃的导热系数,详细方法见GB/T 10294。将样品放入导热系数测试仪中,冷热面分别设置为190℃和210℃,测出通过试样的热流密度后,求出样品在平均温度200℃的导热系数,详细方法见GB/T 10295。

  质量吸湿率:用金属尺和针形厚度计测出样品的尺寸,将样品放入温度为(105±5)℃的电热鼓风干燥箱内烘干至恒重(连续两次称量之差不大于样品末次质量的0.2%),记下样品的质量及烘干温度。在温度为(50±2)℃、相对湿度为(95±3)%,并具有空气循环流动的调温调湿箱内保持(96±4)h。取出后立即放入预称量的样品袋中,密封袋口,冷至室温后称量。扣除袋重后记下样品吸湿后的重量。然后计算出样品的质量吸湿率,具体计算方法见GB/5480。

  憎水率:将样品放入干燥箱内,在(105±5)℃的温度下干燥至恒重,然后在干燥皿中冷却至室温,称量样品的质量m1,将样品安放在憎水性测试仪上,根据样品厚度,调节喷头位置,调节水流量,使其稳定在(60±2)L/h,连续喷淋1h。取下样品,在1min之内用吸水纸快速蘸去表面水滴,立即称量样品的质量m2,最后计算出憎水率,具体计算方法见GB/T10299。

  实施例1

  按照下表2所示的化学成分以常规工艺烧制耐辐照陶瓷,采用通用的坩埚或池窑拉制陶瓷纤维形成平均直径为11μm的丝束,通过对丝束进行短切、梳理、成网、针刺工艺形成厚度为3mm,容重为108kg/m3的耐辐照陶瓷纤维针刺毡。

  表2实施例1中的陶瓷化学成分

  以Na2SiO3为先驱体,C2H5OH为溶剂,H2SO4为催化剂,将C2H5OH/Na2SiO3=4(摩尔比,下同)的Na2SiO3与C2H5OH混合并搅拌,向搅拌中的混合液加入H2O/Na2SiO3=3.5的去离子水和H2SO4/Na2SiO3=2.5×10-3的H2SO4,静置3h~5h,待Na2SiO3充分水解后形成SiO2溶胶。

  通过抽真空将SiO2溶胶浸渍于耐辐照陶瓷纤维针刺毡中,然后在乙醇环境中对SiO2凝胶进行老化处理1~2天,采用TMCS对C2H5OH进行替换,最后85℃~90℃下去除TMCS制成厚度为3mm的耐辐照陶瓷纤维绝热复合材料,该材料性能如表3所示。

  表3实施例1中的绝热复合材料性能

  

  实施例2

  按照下表4所示的化学成分以常规工艺烧制耐辐照陶瓷,采用通用的坩埚或池窑拉制陶瓷纤维形成平均直径为9μm的丝束,通过对丝束进行短切、梳理、成网、针刺工艺形成厚度为6mm,容重为102kg/m3的耐辐照陶瓷纤维针刺毡。

  表4实施例2中的陶瓷化学成分

  以Na2SiO3为先驱体,C2H5OH为溶剂,H2SO4为催化剂,将C2H5OH/Na2SiO3=8的Na2SiO3与C2H5OH混合并搅拌,向搅拌中的混合液加入H2O/Na2SiO3=4的去离子水和H2SO4/Na2SiO3=3.0×10-3的H2SO4,静置3h~5h,待Na2SiO3充分水解后形成SiO2溶胶。

  通过抽真空将SiO2溶胶浸渍于耐辐照陶瓷纤维针刺毡中,然后在乙醇环境中对SiO2凝胶进行老化处理1~2天,采用HMDSO对C2H5OH进行替换,最后85℃~90℃下去除TMCS制成厚度为6mm的耐辐照陶瓷纤维绝热复合材料,该材料性能如表5所示。

  表5实施例2中的绝热复合材料性能

  

  实施例3

  按照下表6所示的化学成分以常规工艺烧制耐辐照陶瓷,采用通用的坩埚或池窑拉制陶瓷纤维形成平均直径为13μm的丝束,通过对丝束进行短切、梳理、成网、针刺工艺形成厚度为6mm,容重为112kg/m3的耐辐照陶瓷纤维针刺毡。

  表6实施例3中的陶瓷化学成分

  以Na2SiO3为先驱体,C2H5OH为溶剂,H2SO4为催化剂,将C2H5OH/Na2SiO3=6的Na2SiO3与C2H5OH混合并搅拌,向搅拌中的混合液加入H2O/Na2SiO3=4的去离子水和H2SO4/Na2SiO3=2.5×10-3的H2SO4,静置3h~5h,待Na2SiO3充分水解后形成SiO2溶胶。

  通过抽真空将SiO2溶胶浸渍于耐辐照陶瓷纤维针刺毡中,然后在乙醇环境中对SiO2凝胶进行老化处理1~2天,采用TMCS对C2H5OH进行替换,最后85℃~90℃下去除TMCS制成厚度为6mm的耐辐照陶瓷纤维绝热复合材料,该材料性能如表7所示。

  表7实施例3中的绝热复合材料性能

  

《一种耐辐照陶瓷纤维绝热复合材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)