欢迎光临小豌豆知识网!
当前位置:首页 > 纺织技术 > 编织制作> 一种多层复合导流层材料的制备方法独创技术18318字

一种多层复合导流层材料的制备方法

2021-03-18 22:01:01

一种多层复合导流层材料的制备方法

  技术领域

  本发明涉及一种多层复合导流层材料的制备方法,属于卫生用品技术领域

  背景技术

  纸尿裤是为婴儿、中老年人尿失禁及瘫痪病人设计的卫生护理产品,由于这种卫生护理产品需要与使用者皮肤接触,要求其具有一定的干爽和吸液能力。而导流层作为面层和吸收芯体的中间层,其能引导面层渗透下来的尿液沿着纸尿裤纵向传导并扩散,使尿液均匀地被吸收芯体吸收。虽然近年来有很多关于导流层结构的专利和产品,但作为满足上述要求的导流层,还存在着一些问题。

  纸尿裤是一种多结构的复合体,从上到下依次为面层、导流层、吸收芯体和底膜。导流层位于面层和吸收芯体之间,其作用是使纸尿裤快速、有效、均匀地吸收液体,避免因高吸水性树脂(SAP)局部吸液量过大而形成阻塞现象,减少纸尿裤回渗量。近年来有较多关于导流层结构研究的报道。例如,龚政研究了一种立体结构的无纺布导流层材料,其采用单层纤维网作为基层,在基层上形成多个纵向的凸起,每列纵向的凸起之间形成导流槽,该结构能有效引导面层液体向下渗透,但不能有效引导液体沿纵向扩散。魏星等研究了一种蓬松导流层,该导流层包括纵向梳理纤维网层和横向梳理蓬松纤维网层,纵向梳理纤维网层可使液体沿纵向扩散到横向梳理蓬松纤维层,横向梳理蓬松纤维层能抵抗一部分压力,使液体短时间存储在导流层内,而不会反渗到透水表层,但该结构不能有效地引导液体向下渗透到吸收芯层。

  现有关于功能性导流层的资料报道有:

  专利CN201320526308.0公开了一种用于纸尿裤的蓬松导流层,在吸收芯体与透水表层之间设有导流层,所述导流层包括纵向梳理纤维层和横向梳理蓬松纤维层,所述纵向梳理纤维层与所述透水表层相接触设置,所述横向梳理蓬松纤维层与所述吸收芯体相接触设置。该专利描述的纵向梳理纤维层和横向蓬松纤维层属于一种理想状态,在实际生产中难以获得完全纵向梳理纤维层(100%纤维均沿着纵向排列,会导致纤网横向没有强力),同样也难以获得横向纤维层100%纤维(100%均沿着横向排列,会导致纤网纵向没有强力),另一方面,完全纵向梳理纤维层紧贴面层,由于导流是需要一定时间的,特别在液体量大时难以达到瞬吸的效果,因此无法付诸于真正生产。

  专利CN201410528786.4公开了一种适用于纸尿裤的非织造双层复合导流层及其生产方法,是以ES、PP、粘胶纤维为原料,分别将PP、粘胶纤维与不同含量的ES纤维均匀混合成网,然后将PP层与粘胶层通过预针刺复合,再通过热风工艺制成双层复合导流层。该发明在制备过程中首先采用针刺复合,再用热风穿透加固,由于采用两种工艺,需要多加一次收卷和放卷,工艺复杂,生产成本高,难以达到批量化生产的目标。

  专利CN201420462705.0公开一种新型的纸尿裤,包括最上层的面层、位于面层下方的导流层、位于导流层下方的吸水层,以及位于吸水层下方的防水底膜层,导流层和吸水层之间还设有一层次导流层,面层的长度大于导流层,导流层的长度大于次导流层,面层、导流层以及次导流层的截面构成一个漏斗形状,面层、导流层、次导流层、吸水层以及防水底膜层的是通过胶水实现层层之间的连接。该专利虽然具有瞬间吸收和多次吸收的特点,但是却不能很好实现沿产品的纵向导流,将会出现从漏斗形导流层下来的液体在吸收层局部聚集,阻碍了吸收层中其他区域的高分子吸水树脂(SAP)吸收能力的发挥。

  27792A公开了一种立体结构的无纺布导流层材料,该导流层材料采用单层的基层,基层上形成多个纵向的凸起,每列纵向的凸起之间形成导流槽。这种结构能有效的引导面层液体渗透下来,但不能有效的引导液体的纵向扩散。

  专利CN203436464U公开了一种蓬松导流层,该导流包括纵向梳理纤维网层和横向梳理蓬松纤维网层,纵向梳理层能纵向扩散液体到横向蓬松纤维层,使液体快速下渗至吸收芯体,横向纤维层能抵抗一部分压力,使液体短时间存储在导流层内,使液体不会反渗到透水表层,这种结构透气性不好。

  综上所述,现有涉及卫生用品导流层材料的专利存在纵向导流能力差、加工工艺复杂、难以形成批量化以及在实际生产时难以实现的问题。为了克服现有导流层材料存在的导流性能差、无法贮存液体、瞬吸效果差、工艺复杂、通透性差和难以量产的技术问题,因此研制开发综合性能良好的导流层,发挥导流、储液和阻隔作用的同时,还要求具有很好的透气和透湿性,是非常关键和必要的。

  发明内容

  本发明所要解决的技术问题:针对现有导流层材料存在的导流性能差、无法贮存液体、瞬吸效果差的问题,提供了一种多层复合导流层材料的制备方法。

  为解决上述技术问题,本发明采用如下所述的技术方案是:

  (1)将聚丙烯酸钠和N,N-二甲基甲酰胺混合,进行室温搅拌处理,即得纺丝液,将纺丝液进行静电纺丝处理,即得半成品,将半成品置于温度为50~60℃的烘箱中干燥至恒重,冷却至室温,即得基体纤维;

  (2)将基体纤维进行开松处理,即得开松基布,将开松基布进行梳理,即得梳理基布;将梳理基布进行热粘合加固后,进行冷风冷却处理,即得纤维膜;

  (3)将聚乳酸颗粒进行干燥处理,即得干燥聚乳酸,将单螺杆挤出机进行预热处理,将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,即得泡沫材料;

  (4)将纤维膜覆盖在泡沫材料上,进行压辊处理,冷却至室温,即得多层复合导流层材料。

  步骤(1)所述的室温搅拌处理步骤为:按质量比2∶25将聚丙烯酸钠和N,N-二甲基甲酰胺混合,在搅拌速度为200~300r/min下室温搅拌4~6h。

  步骤(1)所述的静电纺丝处理步骤为:将纺丝液在纺丝电压为18~22kV下进行静电纺丝处理。

  步骤(2)所述的开松处理步骤为:将基体纤维进行开松处理,开松辊线速度为600~700m/min。

  步骤(2)所述的梳理步骤为:将开松基布进行梳理,锡林速度为600~800m/min,工作辊速度为40~60m/min,剥取辊速度为110~120m/min,道夫速度为10~20m/min。

  步骤(2)所述的冷风冷却处理步骤为:将梳理基布进行热粘合加固后,并置于温度为30~40℃下冷风冷却。

  步骤(3)所述的干燥处理步骤为:将聚乳酸颗粒置于温度为70~80℃的烘箱中干燥至恒重。

  步骤(3)所述的预热处理步骤为:将单螺杆挤出机在温度为180℃下预热5~10min。

  步骤(3)所述的挤出步骤为:将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,通入超临界二氧化碳,螺杆转速为30~50r/min,模头温度为180~185℃,挤出温度为190~200℃。

  步骤(4)所述的压辊处理步骤为:将纤维膜覆盖在泡沫材料上,在温度为140~160℃下压辊1~2min。

  本发明与其他方法相比,有益技术效果是:

  (1)本发明以聚丙烯酸钠为原料,采用静电纺丝法制备出纳米纤维膜,以超临界二氧化碳为发泡剂,通过连续挤出聚乳酸泡沫,将纳米纤维膜和聚乳酸泡沫复合,制备一种多层复合导流层材料;亲水性聚乳酸泡沫材料对体液具有一定的渗透速度,可有效防止液体的渗漏,同时,对体液具有物理吸附作用和储液作用;制备的聚丙烯酸钠纳米纤维膜有利于液体竖直方向的渗透,聚乳酸泡沫材料有利于液体纵向扩散,因此制备的多层复合导流层材料具有良好的导流性能,且能贮存液体,瞬吸效果较好;

  (2)本发明中聚丙烯酸钠是水溶性高分子化合物,具有极强的增稠保水功能,产品纯度高、性能极为稳定、无臭无味,久存不腐败;采用静电纺丝法制备纳米纤维膜,在高电场作用下,射流表面带电电荷相互排斥,劈裂成多股射流,随着溶剂的挥发,射流固化形成纳米纤维并收集在接收器上的过程,制备的纳米纤维膜具有优异的吸水性、良好的生物相容性及化学活性;

  (3)本发明中以超临界二氧化碳为发泡剂,通过连续挤出聚乳酸泡沫,聚乳酸是一种性能良好的新型环保塑料,属可再生材料,具有可降解性,在自然环境中可自然降解,分解的最终产物为水和二氧化碳,不会对环境产生任何污染,聚乳酸还具有良好的生物相容性;制备的聚乳酸泡沫具有质量较轻、冲击强度高、比强度高、隔热性能良好、隔音性能好、吸湿性能较强等许多优良的性能,而且聚乳酸泡沫塑料可再生,易降解,并且降解后对环境无污染,另外它还具有机械性能好,耐热性强等优点;

  (4)本发明将纳米纤维膜和聚乳酸泡沫复合,制备一种多层复合导流层材料,纳米纤维膜是一种具有多孔隙的物质,比表面积大,液体能够迅速深入到纤维的孔隙,完成纤维的吸湿过程,聚乳酸泡沫的孔隙比纳米纤维膜大,两者相结合,制备出的多层复合导流层材料具有良好的瞬吸效果和导流性能。

  具体实施方式

  按质量比2∶25将聚丙烯酸钠和N,N-二甲基甲酰胺混合,在搅拌速度为200~300r/min下室温搅拌4~6h,即得纺丝液,将纺丝液在纺丝电压为18~22kV下进行静电纺丝处理,即得半成品,将半成品置于温度为50~60℃的烘箱中干燥至恒重,冷却至室温,即得基体纤维;将基体纤维进行开松处理,开松辊线速度为600~700m/min,即得开松基布,将开松基布进行梳理,锡林速度为600~800m/min,工作辊速度为40~60m/min,剥取辊速度为110~120m/min,道夫速度为10~20m/min,即得梳理基布;将梳理基布进行热粘合加固后,并置于温度为30~40℃下冷风冷却,即得纤维膜;将聚乳酸颗粒置于温度为70~80℃的烘箱中干燥至恒重,即得干燥聚乳酸,将单螺杆挤出机在温度为180℃下预热5~10min,将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,通入超临界二氧化碳,螺杆转速为30~50r/min,模头温度为180~185℃,挤出温度为190~200℃,即得泡沫材料;将纤维膜覆盖在泡沫材料上,在温度为140~160℃下压辊1~2min,冷却至室温,即得多层复合导流层材料。

  实施例1

  将聚丙烯酸钠和N,N-二甲基甲酰胺混合,进行室温搅拌处理,即得纺丝液,将纺丝液进行静电纺丝处理,即得半成品,将半成品置于温度为50℃的烘箱中干燥至恒重,冷却至室温,即得基体纤维;将基体纤维进行开松处理,即得开松基布,将开松基布进行梳理,即得梳理基布;将梳理基布进行热粘合加固后,进行冷风冷却处理,即得纤维膜;将聚乳酸颗粒进行干燥处理,即得干燥聚乳酸,将单螺杆挤出机进行预热处理,将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,即得泡沫材料;将纤维膜覆盖在泡沫材料上,进行压辊处理,冷却至室温,即得多层复合导流层材料。室温搅拌处理步骤为:按质量比2∶25将聚丙烯酸钠和N,N-二甲基甲酰胺混合,在搅拌速度为200r/min下室温搅拌4h。静电纺丝处理步骤为:将纺丝液在纺丝电压为18kV下进行静电纺丝处理。开松处理步骤为:将基体纤维进行开松处理,开松辊线速度为600m/min。梳理步骤为:将开松基布进行梳理,锡林速度为600m/min,工作辊速度为40m/min,剥取辊速度为110m/min,道夫速度为10m/min。冷风冷却处理步骤为:将梳理基布进行热粘合加固后,并置于温度为30℃下冷风冷却。干燥处理步骤为:将聚乳酸颗粒置于温度为70℃的烘箱中干燥至恒重。预热处理步骤为:将单螺杆挤出机在温度为180℃下预热5min。挤出步骤为:将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,通入超临界二氧化碳,螺杆转速为30r/min,模头温度为180℃,挤出温度为190℃。压辊处理步骤为:将纤维膜覆盖在泡沫材料上,在温度为140℃下压辊1min。

  实施例2

  将聚丙烯酸钠和N,N-二甲基甲酰胺混合,进行室温搅拌处理,即得纺丝液,将纺丝液进行静电纺丝处理,即得半成品,将半成品置于温度为55℃的烘箱中干燥至恒重,冷却至室温,即得基体纤维;将基体纤维进行开松处理,即得开松基布,将开松基布进行梳理,即得梳理基布;将梳理基布进行热粘合加固后,进行冷风冷却处理,即得纤维膜;将聚乳酸颗粒进行干燥处理,即得干燥聚乳酸,将单螺杆挤出机进行预热处理,将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,即得泡沫材料;将纤维膜覆盖在泡沫材料上,进行压辊处理,冷却至室温,即得多层复合导流层材料。室温搅拌处理步骤为:按质量比2∶25将聚丙烯酸钠和N,N-二甲基甲酰胺混合,在搅拌速度为250r/min下室温搅拌5h。静电纺丝处理步骤为:将纺丝液在纺丝电压为20kV下进行静电纺丝处理。开松处理步骤为:将基体纤维进行开松处理,开松辊线速度为650m/min。梳理步骤为:将开松基布进行梳理,锡林速度为700m/min,工作辊速度为50m/min,剥取辊速度为115m/min,道夫速度为15m/min。冷风冷却处理步骤为:将梳理基布进行热粘合加固后,并置于温度为35℃下冷风冷却。干燥处理步骤为:将聚乳酸颗粒置于温度为75℃的烘箱中干燥至恒重。预热处理步骤为:将单螺杆挤出机在温度为180℃下预热7min。挤出步骤为:将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,通入超临界二氧化碳,螺杆转速为40r/min,模头温度为183℃,挤出温度为195℃。压辊处理步骤为:将纤维膜覆盖在泡沫材料上,在温度为150℃下压辊1.5min。

  实施例3

  将聚丙烯酸钠和N,N-二甲基甲酰胺混合,进行室温搅拌处理,即得纺丝液,将纺丝液进行静电纺丝处理,即得半成品,将半成品置于温度为60℃的烘箱中干燥至恒重,冷却至室温,即得基体纤维;将基体纤维进行开松处理,即得开松基布,将开松基布进行梳理,即得梳理基布;将梳理基布进行热粘合加固后,进行冷风冷却处理,即得纤维膜;将聚乳酸颗粒进行干燥处理,即得干燥聚乳酸,将单螺杆挤出机进行预热处理,将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,即得泡沫材料;将纤维膜覆盖在泡沫材料上,进行压辊处理,冷却至室温,即得多层复合导流层材料。室温搅拌处理步骤为:按质量比2∶25将聚丙烯酸钠和N,N-二甲基甲酰胺混合,在搅拌速度为300r/min下室温搅拌6h。静电纺丝处理步骤为:将纺丝液在纺丝电压为22kV下进行静电纺丝处理。开松处理步骤为:将基体纤维进行开松处理,开松辊线速度为700m/min。梳理步骤为:将开松基布进行梳理,锡林速度为800m/min,工作辊速度为60m/min,剥取辊速度为120m/min,道夫速度为20m/min。冷风冷却处理步骤为:将梳理基布进行热粘合加固后,并置于温度为40℃下冷风冷却。干燥处理步骤为:将聚乳酸颗粒置于温度为80℃的烘箱中干燥至恒重。预热处理步骤为:将单螺杆挤出机在温度为180℃下预热10min。挤出步骤为:将干燥聚乳酸置于预热后的单螺杆挤出机中挤出,通入超临界二氧化碳,螺杆转速为50r/min,模头温度为185℃,挤出温度为200℃。压辊处理步骤为:将纤维膜覆盖在泡沫材料上,在温度为160℃下压辊2min。

  将本发明制备的多层复合导流层材料及市售无纺布导流层材料进行性能检测,具体检测结果如下表表1。

  测试方法:

  (1)透气性

  采用YG461D数字式织物透气量仪,测试方法依据GB/T5453-1997标准执行。

  导湿性

  采用YG871毛细效应测定仪,按照标准ZBW04019-1990测试。测试布样规格25mm×300mm。导湿性反映了导流层的瞬吸性,其值越大,瞬吸性越好。

  返渗量

  返渗量测试试样尺寸:100cm×100cm,以累计试样重量不小于1g为一个试样,称重精确至0.01g为原始质量。将试样浸渍在9%的生理盐水中,60s后取出试样,垂直悬挂,滴水120s后称重,作为吸水后的试样质量。将上述滴水后的试样放在滤纸上,用重锤加压60s后称其重量为m,最终返渗量的计算方法为:

  返渗量(%)=吸液率-持液率,其中:

  吸液率(%)=(试样吸水后质量-原始质量)/原始质量×100,作5次取平均值,结果保留一位小数;

  持液率(%)=(m-原始质量)/原始质量×100

  表1多层复合导流层材料性能表征

  

  由表1可知,本发明制备的多层复合导流层材料,瞬吸效果较好,透气性佳,导流性能优异,具有广阔的应用前景和市场价值。

《一种多层复合导流层材料的制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)