欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > 气体分配> 一种导磁管柱冲蚀的实时在线检测装置独创技术15156字

一种导磁管柱冲蚀的实时在线检测装置

2021-03-18 10:04:41

一种导磁管柱冲蚀的实时在线检测装置

  技术领域

  本实用新型涉及油气管道检测技术领域,特别涉及一种基于磁场感应幅度和相位变化的导磁管柱冲蚀实时在线检测装置。

  背景技术

  我国20世纪70年代所建管道服役年龄已经接近或超过40年,老龄化严重。油气输送管道一旦发生事故影响面广、后果严重。管道检测与安全预警技术是保障油气管道安全运行的重要手段。无损检测常规技术有:超声检测、射线检测、磁粉检测、渗透检验、涡流检测。这些检测技术应用于长输管道的在线检测都存在难以弥补的缺陷,如:超声波难以准确检测有内部结垢、外敷防腐层的管道金属层的厚度;手动移动的超声探头无法实现埋地管线检测,也无法实现在线实时检测。射线探伤要用放射源发出射线,对人的伤害极大,操作不慎会导致人员受到辐射,患白血病的概率增加。磁粉检测对被检测件的表面光滑度要求高,对检测人员的技术和经验要求高,检测范围小检测速度慢。渗透检测无法检测变薄而未穿孔的管道。常规的涡流检测只能检测导电材料的表面和近表面缺陷,检测结果也易于受到材料本身及其他因素的干扰。

  而且,上述这些常规检测方法均存在如下问题:(1)部分检测技术在进行检测时需要事先将油气管道停工,在检测过程中,油气管道是不能进行正常的输送油气的工作。(2)这些检测方法大都适用于定期对油气管道进行检测,不能实时在线检测。(3)定期对管道进行检测的方式,因为不知道管道是否存在问题,需要对所有管道进行检测,检测的结果可能是管道完好无损,这就造成大量人力物力的浪费。(4)对深埋在地下的,处于荒郊野外的以及高空架设安装的这些管道,不便于进行检测。

  发明内容

  本实用新型的目的针对现有管道常规检测方法存在的需要对管道停工后检测,不能进行实时在线检测,不适用于深埋在地下的,处于荒郊野外的以及高空架设安装的这些管道检测等问题,提供一种基于磁场感应幅度和相位变化的导磁管柱冲蚀实时在线检测装置。

  本实用新型提供的导磁管柱冲蚀实时在线检测装置,包括:套设固定安装在导磁管柱外壁上的m个感应线圈,m大于等于2。感应线圈等间距安装在导磁管柱上。感应线圈为漆包线材质绕制的空心线圈,绕制方向相同,绕制匝数大于100匝。每个感应线圈均与信号处理模块连接,每个感应线圈均可作为激励线圈或接收线圈。在检测工作时,有且仅有一个感应线圈作为激励线圈,其余感应线圈作为接收线圈。

  所述信号处理模块包括多通道模拟开关、可编程放大器、激励源放大器、可编程滤波器、幅度相位检测器、微处理器。所述多通道模拟开关为多选一模拟开关。所述多通道模拟开关的通道数大于等于感应线圈的数量m。多通道模拟开关由两组独立的模拟开关构成,两组多通道模拟开关对应通道动触点并联后分别与每个感应线圈连接,其中一组多通道模拟开关的静触点与可编程放大器连接,另外一组多通道模拟开关的静触点与激励源放大器连接。可编程放大器依次连接可编程滤波器、幅度相位检测器、微处理器;幅度相位检测器还与激励源放大器连接。所述多通道模拟开关、可编程放大器、激励源放大器、可编程滤波器、幅度相位检测器和微处理器均包含在信号处理模块内部。

  其中,所述可编程放大器采用差分输入的低噪声仪表放大器,放大增益为1-10000倍可调节,放大增益通过模拟电压调节,或通过数字接口调节,或通过后端反馈自动调节。

  所述可编程滤波器为开关电容滤波器,中心频率为0.1Hz-100KHz可调,阶数大于等于4阶。所述可编程滤波器可通过微处理器编程后使其工作在带通滤波或低通滤波两种模式。

  所述幅度相位检测器为接收信号幅度和相位检测器,幅度和相位检测结果以数字信号输出。

  所述微处理器采用低功耗微处理器,所述微处理器上设有ADC、SPI、DAC、UART、IIC、GPIO中的任意一种或多种外设。

  与现有技术相比,本实用新型的有益之处在于:

  (1)本实用新型的检测装置采用磁场测量,环保无辐射,非接触式测量,检测装置始终安装在管道外表面,不破坏管柱结构,不伤害防腐层,探测导磁金属材质损伤,不受结垢和防腐层影响。

  (2)在进行检测时无需将油气管道停工,不影响油气管道的进行正常的输送工作,实时在线检测,无需人工干预,节约巡检成本。

  (3)对深埋在地下的,处于荒郊野外的以及高空架设安装的这类管道,检测方便。

  本实用新型的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本实用新型的研究和实践而为本领域的技术人员所理解。

  附图说明

  图1、本实用新型的导磁管柱冲蚀的实时在线检测装置安装结构示意图。

  图2、信号处理模块的结构示意图。

  图中标号:1、2、3…m是感应线圈编号、11-导磁管柱、12-感应线圈、13-信号处理模块、14-多通道模拟开关、15-可编程放大器、16-激励源放大器、17-可编程滤波器、18-幅度相位检测器、19-微处理器。

  具体实施方式

  以下结合附图对本实用新型的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本实用新型,并不用于限定本实用新型。

  如图1和2所示,本实用新型提供的导磁管柱冲蚀实时在线检测装置,包括:套设固定安装在导磁管柱11外壁上的m个感应线圈12,依次编号1、2、3…m,m大于等于2。所有感应线圈12等间距安装在导磁管柱11上。感应线圈12为漆包线材质绕制的空心线圈,绕制方向相同,绕制匝数大于100匝。每个感应线圈12均与信号处理模块13连接,每个感应线圈12均可作为激励线圈或接收线圈。在检测工作时,有且仅有一个感应线圈12作为激励线圈,其余感应线圈12作为接收线圈。

  所述信号处理模块13包括安装在信号处理模块内部的多通道模拟开关14、可编程放大器15、激励源放大器16、可编程滤波器17、幅度相位检测器18、微处理器19。所述多通道模拟开关14为多选一模拟开关,优选的导通电阻小于1欧。所述多通道模拟开关14的通道数大于等于感应线圈的数量m。多通道模拟开关14由两组独立的模拟开关构成,两组多通道模拟开关14对应通道动触点并联后分别与每个感应线圈12连接,其中一组多通道模拟开关14的静触点与可编程放大器15连接,另外一组多通道模拟开关14的静触点与激励源放大器16连接。作为优选,所述多通道模拟开关14可以采用瑞萨电子有限公司(Renesas)的型号为ISL84781的低导通电阻模拟开关。

  可编程放大器15依次连接可编程滤波器17、幅度相位检测器18、微处理器19;幅度相位检测器18还与激励源放大器16连接。优选的,所述激励源放大器采用德州仪器公司(Texas Instruments)型号为TLV4120的功率运算放大器。

  其中,所述可编程放大器15采用差分输入的低噪声仪表放大器,放大增益为1-10000倍可调节,放大增益通过模拟电压调节,或通过数字接口调节,或通过后端反馈自动调节。优选的是,可编程放大器采用亚德诺半导体技术有限公司(Analog Devices,Inc)型号为AD8338的低功耗可编程宽带放大器。

  所述可编程滤波器17为开关电容滤波器,中心频率为0.1Hz-100KHz可调,阶数大于等于4阶。可编程滤波器17可通过微处理器编程后使其工作在带通滤波或低通滤波两种模式。可编程滤波器可通过微处理器编程后使其带通滤波中心频率保持与激励信号频率一致。优选采用亚德诺半导体技术有限公司(Analog Devices,Inc)型号为LTC1064的高阶滤波器。

  所述幅度相位检测器18为接收信号幅度和相位检测器,幅度和相位检测结果以数字信号输出。幅度相位检测器优选采用亚德诺半导体技术有限公司(Analog Devices,Inc)型号为AD5933的阻抗转换器网络分析处理芯片。

  所述的微处理器19采用低功耗微处理器,微处理器上设有ADC、SPI、DAC、UART、IIC、GPIO中的任意一种或多种外设。微处理器优选采用德州仪器公司(TexasInstruments)型号为MSP430FG4270的高性能超低功耗微处理器。

  上述导磁管柱冲蚀的实时在线检测装置进行检测的方法,步骤如下:

  步骤S1、计算感应信号幅值UL,公式如下:

  

  其中,Rm、Im满足下式:

  

  

  L为感应线圈的电感,单位H,满足下式:

  

  

  C为感应线圈的分布电容,单位F,满足下式:

  

  上述公式中,μa为有效导磁率,无量纲;ω为激励信号角频率,ω=2πf,f为激励信号频率,单位Hz;μ0为真空磁导率,单位H/m;μr为管柱材料相对磁导率,无量纲;d为管柱的外径,单位m;N为感应线圈匝数;l为单节管柱的长度,单位m;lω为感应线圈绕线宽度,单位m;σ为管柱材料电导率,S/m;M为激励线圈和接收线圈之间的互感,单位H,取值介于L/200~L之间;RL为接收线圈电压测量电路等效负载电阻,单位Ω;UI为激励信号电压幅值,单位V;R为感应线圈的直流电阻,单位Ω;n为感应线圈绕线层数;ε0为真空介电常数,单位F/m;εr为漆包线绝缘漆的相对介电常数,无量纲;δ为漆包线外径,单位m;d′为漆包线介质厚度,单位m。

  首先设置线圈安装间距DC=0.8×l(这是一个经验公式),将线圈匝数N=100,M=L/200,f=0.1,以及管柱、线圈和测量电路的其他实际参数,代入感应信号幅值UL的计算公式中,最终计算出感应信号幅值UL。若UL大于等于100μV,则以该组参数作为检测装置正式安装参数。若UL小于100μV,则逐步增加线圈匝数或缩短线圈安装间距,计算UL,直至UL大于100μV为止,然后以该组参数作为检测装置正式安装参数。

  步骤S2、装置安装好后通过外部指令启动初始化系统;具体步骤如下:

  S21、通过调节多通道模拟开关,将一个感应线圈作为激励线圈,将相邻的另一个感应线圈作为接收线圈。具体方法是:将所有感应线圈依次编号为1、2、3…m,微处理器通过IO切换其中一组多通道模拟开关,使得1号感应线圈与激励源放大器输出连接,此时1号感应线圈作为激励线圈使用;微处理器通过IO切换另一组多通道模拟开关,使得2号感应线圈与可编程放大器输入连接,此时2号感应线圈作为接收线圈使用。

  S22、确定最佳工作频率。具体方法是:微处理器控制幅度相位检测器输出频率为0.1Hz的初始激励信号,驱动激励线圈产生交变磁场;可编程滤波器调整为截止频率为100KHz的低通滤波模式;接收线圈接收到感应信号,调整可编程放大器的放大器增益使接收信号与激励信号幅度接近,偏差小于10%,记录初始激励频率,接收信号幅度,放大增益;逐步增加激励频率,当接收信号幅度大于激励信号10%时,调整可编程放大器的放大器增益使接收信号幅度小于激励信号的10%,起到自动增益控制的目的,并更新记录的初始激励频率,接收信号幅度,放大增益;如此循环增加激励频率直到频率达到100KHz,停止扫频步骤,此时微处理器的RAM区中记录的激励频率为最佳工作频率,将最佳工作频率存储到微处理器的Flash或者EEPROM区中。最佳工作频率就是满足接收幅度最大时的频率。最佳工作频率被限制在0.1Hz-100KHz之间,不能高于100KHz。

  S23、将激励信号频率设置为步骤S22中的最佳工作频率值,可编程滤波器调整为带通滤波模式,调整可编程放大器的放大器增益使接收信号幅度小于激励信号的10%;切换另一个感应线圈作为激励线圈,其余线圈作为接收线圈,在微处理器中建立数组P[m:0][m-1:0],将编号为m的感应线圈作为激励线圈时测量的其余感应线圈接收到的相位值保存到数组P中,当获取所有激励接收线圈数据后将数组P储存到微处理器的Flash或者EEPROM区中;完成初始化系统步骤。所述相位值满足如下公式:

  

  式中,Rm、Im代表的含义与步骤S1中的Rm、Im相同。

  步骤S3、完成初始化系统步骤后,进入工作状态,因导磁管柱冲蚀后会引起其漏磁量改变,通过持续轮换激励线圈和采集所有感应线圈的相位值并与数组P记录的相位值对比,当大于1%时,判定为冲蚀严重,通过微处理器对外预警。

  激励线圈和接收线圈切换的步骤是:当1号感应线圈作为激励线圈时,2号、3号、4号到m号的感应线圈作为接收线圈;当2号感应线圈作为激励线圈时,1号、3号、4号到m号的感应线圈作为接收线圈;以此类推;通过激励线圈和接收线圈切换可消除测量死区,确定冲蚀位置。

  综上所述,本实用新型提供了一种基于磁场感应幅度和相位变化的导磁管柱冲蚀实时在线检测装置,克服了现有管道常规检测方法存在的需要对管道停工后检测,不能进行实时在线检测,不适用于深埋在地下的,处于荒郊野外的以及高空架设安装的这些管道检测等问题。本实用新型的检测装置实用性更强,无需人工干预,节约巡检成本。

  以上所述,仅是本实用新型的较佳实施例而已,并非对本实用新型作任何形式上的限制,虽然本实用新型已以较佳实施例揭露如上,然而并非用以限定本实用新型,任何熟悉本专业的技术人员,在不脱离本实用新型技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本实用新型技术方案的范围内。

《一种导磁管柱冲蚀的实时在线检测装置.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)