欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 一种生物基碳点及其制备方法和应用独创技术13413字

一种生物基碳点及其制备方法和应用

2021-01-31 22:26:44

一种生物基碳点及其制备方法和应用

  技术领域

  本发明属于碳纳米材料技术领域,具体涉及一种生物基碳点及其制备方法和应用。

  背景技术

  碳点作为一种优良的新型荧光碳纳米材料,由于具有高导电性、大比表面积,良好的生物相容性、低毒性、寿命长等优点,而受到人们广泛关注。目前合成碳点的方法有消解大体积碳源的“自上而下法”和热解有机分子和聚合物的“自下而上法”。“自下而上法”中小分子前驱体通过可控热解或者微波辅助等方法,经过化学反应生成CDs;“自上而下法”借助物理或化学方法,从大尺寸碳结构(石墨烯、碳纳米管等)上切割或刻蚀下来小尺寸量子点,包括激光剥离、电弧放电、水热法和电化学氧化法等。但是,以石墨烯为基础的前体非常昂贵,如果用块状石墨制备,则需要几天时间并产生大量有毒化学物质,此外,高压-高温下采用强酸处理才能将石墨烯强有序的结构分解成小尺寸的CDs,且需要严格的后处理工艺,过程复杂。天然多糖是一种绿色、自然、廉价、可持续和可再生的碳源,可用于大规模生产CDs。离子液体(ILs)不仅是一种可溶解天然多糖的“绿色溶剂”,且大多数ILs具有含氮的阳离子或无机含异质原子的阴离子,使其成为用于制备光致发光掺杂CDs的理想分子前驱体。但是,离子液体价格昂贵,单独使用制备碳点成本较高。

  作为一种新型的碳纳米材料,与传统的半导体量子点相比,碳点所具备的独特优势使其在化学传感器、生物传感器、生物成像、纳米医学等领域已有广泛的应用。而且碳点作为电子供体和受体可诱导化学发光和电化学发光,使其也可以应用于光电子学、催化和超级电容器等领域。

  综上所述,研发一种成本低、制备方法简单且应用价值高的生物基碳点具有重要意义。

  发明内容

  针对现有技术中制备碳点的碳源和前驱体价格昂贵、成本高及制备工艺复杂的问题,本发明提供了一种生物基碳点及其制备方法和应用,将天然多糖转化为高附加值碳点,在磺酸功能化离子液体与聚乙二醇协同作用下,采用一步水热法合成的碳点荧光量子产率高、发光强度强、稳定性好,具有在近红外区响应的上转换发光性质,可选择性检测Cr(VI)离子。

  本发明通过以下技术方案实现:

  一种生物基碳点,通过以下方法制备得到:将1~3份天然多糖、2~6份磺酸功能化离子液体和3~9份聚乙二醇在水中混合均匀,于160~240℃下反应6~18小时,经纯化、冷冻干燥后得生物基碳点;

  所述的份数为重量份。

  优选地,所述的天然多糖为纤维素、木质素、甲壳素、壳聚糖、淀粉、卡拉胶及其衍生物中的一种以上。

  优选地,所述的聚乙二醇的分子量为400~2000。

  本发明中,所述的生物基碳点的制备方法为,将1~3份天然多糖、2~6份磺酸功能化离子液体和3~9份聚乙二醇在水中混合均匀,于160~240℃下反应6~18小时,经纯化、冷冻干燥后得生物基碳点。

  优选地,所述的反应温度为200℃,反应时间为12小时。

  优选地,所述的纯化方法为离心洗涤沉淀3~4次,收集上清液,经微孔滤膜过滤后,转移至透析袋中透析。

  优选地,所述的离心条件为:转速10000~15000rpm,时间5min;所述的透析条件为:透析袋截留分子量500,透析72h。

  优选地,所述的磺酸功能化离子液体的制备方法为:将1-甲基咪唑逐滴加入等摩尔的1, 3-丙磺酸内酯的丙酮溶液中,室温下搅拌3 h,得到的固体经丙酮洗涤、过滤后,置于烘箱中干燥5 h;缓慢加入等摩尔的浓硫酸,于80 °C下搅拌6 h,得到黏性液体,采用乙酸乙酯对其洗涤3次后,置于烘箱中去除挥发组分,即得到磺酸功能化的离子液体。

  本发明所述的生物基碳点的应用,应用于选择性检测Cr(VI)离子,将所制备的碳点应用于Cr(VI)的检测,具有较高的灵敏度和选择性。

  本发明针对离子液体价格昂贵,单独使用制备碳点成本较高。研究发现,将离子液体磺酸功能化,可进一步引入硫原子,氮、硫元素掺杂可用于制备高光致发光的CDs。此外,引入聚乙二醇可以增加CDs的表面缺陷和官能团,使其具有明亮、稳定的发光性能和良好的水分散性能。

  本发明旨在提供一种廉价高效的方法,将天然多糖转化为高附加值碳点,即对天然多糖进行水热反应,利用磺酸功能化离子液体和聚乙二醇分别对碳点进行氮、硫元素掺杂和表面基团封端,使合成的碳点荧光量子产率高、荧光强度强且稳定性好,具有在近红外区响应的上转换发光性质,可应用于重金属离子检测等领域。

  有益效果

  (1)本发明提供了一种可以将低值的天然多糖转化为高附加值的碳点的技术;

  (2)本发明制备的碳点在磺酸功能化离子液体与聚乙二醇协同作用下,采用一步水热法合成的碳点荧光量子产率高、发光强度强、稳定性好,具有在近红外区响应的上转换发光性质,可选择性检测Cr(VI)离子,且在多色生物成像等领域具有应用潜力。

  附图说明

  图1:a:实施例1制备的纤维素基碳点在不同激发波长下的荧光发射光谱图;b:实施例2制备的甲壳素基碳点在不同激发波长下的荧光发射光谱;c:实施例3制备的壳聚糖基碳点在不同激发波长下的荧光发射光谱图;d: 纤维素基碳点紫外吸收光谱以及最大激发光谱(Ex)和发射光谱(Em);

  图2:CD-IPM、CD-IP、CD-PM、CD-IM和CD-H的荧光强度对比图(激发波长为(397 nm),发射波长为(455 nm)

  图3:a为CD-IPM在不同pH条件下的荧光强度图,b为不同离子强度下的荧光强度图;

  图4为实施例1制备的CD-IPM碳点X射线光电子能谱表征;

  图5为碳点CD-IPM的透射电镜图和粒径分布直方图;

  图6为实施例1制备的碳点与不同浓度Cr(VI)混合溶液的荧光光谱图(a);

  图7为不同离子对碳点(CD-IPM)荧光强度的影响(F0、F分别表示加入不同离子前后碳点的荧光强度)。

  具体实施方式

  为了使本领域的人员更好地理解本发明的技术方案,下面对本发明的技术方案进行清楚、完整的描述,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它类同实施例,都应当属于本申请保护的范围。

  本发明实施例所述的磺酸功能化的离子液体(SO3H-IL)离子液体的制备方法为:将0.1 mol1-甲基咪唑逐滴加入等摩尔的1, 3-丙磺酸内酯的丙酮溶液中,室温下搅拌3 h,得到的白色固体经丙酮洗涤、过滤后,置于烘箱中干燥5 h,缓慢加入等摩尔的浓硫酸,于80°C下搅拌6 h,得到黏性液体,采用乙酸乙酯对其洗涤3次后,置于烘箱中去除挥发组分,得到磺酸功能化的离子液体(SO3H-IL)。

  实施例1

  将1 g纤维素、2 gSO3H-IL和6 g聚乙二醇400溶解于30 mL蒸馏水中,磁力搅拌4 h形成均一的混合液。将混合液转移至50 mL具聚四氟乙烯内衬的反应釜中,于200 °C反应12 h。稀释反应液并离心(10000 rpm),洗涤沉淀3次,将收集的所有上清液经微孔滤膜(0.22 μm)过滤后,转移至截留分子量为500的透析袋中透析72 h,冷冻干燥得纤维素基碳点样品,命名为CD-IPM。

  实施例2

  将1 g甲壳素、3 g SO3H-IL和6 g聚乙二醇800溶解于30 mL蒸馏水中,磁力搅拌4 h形成均一的混合液。将混合液转移至50 mL具聚四氟乙烯内衬的反应釜中,于200 °C反应12h。稀释反应液并离心(10000 rpm),洗涤沉淀3次,将收集的所有上清液经微孔滤膜(0.22 μm)过滤后,转移至截留分子量为500的透析袋中透析72 h,冷冻干燥得甲壳素基碳点样品。

  实施例3

  将1 g壳聚糖、2 gSO3H-IL和4g聚乙二醇2000溶解于30 mL蒸馏水中,磁力搅拌4 h形成均一的混合液。将混合液转移至50 mL具聚四氟乙烯内衬的反应釜中,于200 °C反应12 h。稀释反应液并离心(10000 rpm),洗涤沉淀3次,将收集的所有上清液经微孔滤膜(0.22 μm)过滤后,转移至截留分子量为500的透析袋中透析72 h,冷冻干燥得壳聚糖基碳点样品。

  对比例1

  对比例1与实施例1相比,所不同的不加入实施例1中的纤维素,其余操作条件及步骤与实施例1相同,得到的碳点命名为CD-IP。

  对比例2

  对比例2与实施例1相比,所不同的是不加入SO3H-IL,其余操作条件及步骤与实施例1相同,得到的碳点命名为CD-PM。

  对比例3

  对比例3与实施例1相比,所不同的是不加入实施例1中的聚乙二醇400,其余操作条件及步骤与实施例1相同,得到的碳点命名为CD-IM。

  对比例4

  对比例4与实施例1相比,所不同的是不加入SO3H-IL和聚乙二醇400,其余操作条件及步骤与实施例1相同,得到的碳点命名为CD-H。

  表征及应用

  (1)荧光量子产率

  对本发明实施例1及对比例中制备的CD-IPM、CD-IP、CD-PM、CD-IM和CD-H碳点水溶液(100 μg/mL),外观为棕色或浅棕色透明溶液。碳点荧光量子产率按文献报道的方法测定,具体地,以标准物硫酸奎宁(溶剂为0.1M的硫酸,ηSt=1.33,ΦSt=0.54)为参照,在相同激发条件下,测量标准参比样品和待测样品的荧光积分面积、吸光度值,依据公式ΦX=ΦSt(AX/ASt)(ISt/IX)(ηX/ηSt)2(其中,Φ:荧光量子产率,A:荧光积分面积,I:吸光度,η:折射率,X:待测物,St:标准物)计算样品溶液的荧光量子产率。

  其荧光量子产率如下表1:

  表1

  (2)光学性能表征

  为了探究所制备碳点的光学性能,对实施例1、实施例2和实施例3制备的生物基碳点荧光光谱进行了测定,如图1a、图1b、图1c所示,具有近红外光区响应的上转换发光性质;实施例1制备的纤维素基碳点(CD-IPM)的紫外-可见吸收光谱,如图1d所示,在210和275nm处有两个吸收峰,且最适合激发波长为397 nm,最强发射波长为455 nm。

  对实施例1中制备的纤维素基碳点及对比例1~4中制备的碳点的荧光强度进行对比(激发波长为397nm,发射波长为455nm),结果如图2所示,由图2可知,CD-IPM溶液的荧光强度较CD-PM、CD-IM和CD-H大幅度提高。

  为了考察所制备碳点的荧光稳定性,进一步研究了不同pH值、离子强度(NaCl)下碳点的荧光强度,结果如图3a和3b所示。图3a为实施例1制备的生物基碳点在不同pH值(2~11)条件下的荧光强度,酸性条件下,碳点的荧光强度大于碱性条件下。当pH值为2时,荧光强度最大,说明本发明制备的生物基碳点适用于酸性和弱碱性环境。图3b为离子强度对碳点荧光强度的影响,从图中可以看出,随着NaCl浓度的增大,实施例1所制备碳点的荧光强度几乎不变,表明碳点在较高离子强度环境下仍具有良好的稳定性。

  (3)XPS表征

  为了进一步确定所制备的碳点CD-IPM的表面结构和元素组成,利用X-射线光电子能谱(XPS)对其进行表征,CD-IPM的XPS谱图如图4所示,显示在532.3、400.0、285.4、168.6 eV处出现四个峰,分别对应于O1s、N1s、C1s和S2p的特征结合能,氮元素和硫元素成功掺杂入碳点结构中。

  (4)电镜表征

  采用透射电镜表征碳点CD-IPM形貌,其透射电镜图和粒径分布直方图结果如图5a和图5b所示,CD-IPM粒径分布为1-4.6nm,平均粒径大小为3.32nm,晶格条纹间距为0.20nm,具有类似石墨的晶体结构。

  应用

  (1)CD-IPM碳点在Cr(VI)检测中的应用;

  本发明中制备的CD-IPM碳点与Cr(VI)作用,可以使碳点的荧光发生淬灭。为了考察所制备的碳点用作传感器检测Cr(VI)离子的可行性,对不同浓度的Cr(VI)离子溶液中碳点的荧光强度进行分析。由图6可以看出,随着Cr(VI)浓度的升高,碳点的荧光强度逐渐减弱,说明Cr(VI)可以有效的使碳点的荧光强度发生淬灭。

  为了测试该生物基碳点的选择性,在同样的条件下测定碳点对Fe2+、Fe3+、Cu2+、Ag+、Co2+、Mg2+、Pb2+、La3+、Al3+、Ca2+、Cd2+、Hg2+、Cr3+、F-、Cl-、Br-、I-、SO42-、CO32-、PO32-、NO3-和Cr(VI)的荧光响应,结果如图7所示,从图中可以看出,Cr(VI)对碳点的荧光淬灭强度明显大于其他阳离子和阴离子,说明碳点对检测Cr(VI)具有良好的选择性。

《一种生物基碳点及其制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)