欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 银三角环纳米颗粒阵列/单层石墨烯薄膜复合材料及其制备方法独创技术10289字

银三角环纳米颗粒阵列/单层石墨烯薄膜复合材料及其制备方法

2021-02-01 06:51:11

银三角环纳米颗粒阵列/单层石墨烯薄膜复合材料及其制备方法

  技术领域

  本发明属于石墨烯基复合纳米材料的制备领域,特别涉及一种银三角环纳米颗粒阵列/单层石墨烯薄膜复合材料及其制备方法。

  背景技术

  石墨烯是一种新型碳纳米材料,拥有独特的物理化学性质,应用前景十分广阔。石墨烯的二维平面为构筑器件提供了很好的平台,与其它材料复合后的协同作用能进一步提高器件性能。由于在传感、催化、光电子等领域具有巨大应用潜力,石墨烯基复合材料引起广泛的研究兴趣。比如表面增强Raman散射(SERS)检测,石墨烯与贵金属纳米复合结构能充分利用石墨烯本身的化学增强和贵金属大的物理增强、以及石墨烯大的比表面和强吸附能力,从而提高检测分子的浓度极限。

  化学液相法合成的微米级氧化石墨烯片及其复合材料得到了广泛研究,但是,氧化石墨烯上生长的颗粒是杂乱无章的,且复合材料干燥后一般呈粉体状,影响了SERS等一些应用。目前,CVD(化学气相沉积)工艺制备连续石墨烯薄膜已经成熟,为发挥石墨烯材料的优势提供了很好的选择。然而,人们使用这种石墨烯薄膜制备复合材料或器件的方式通常是采用转移法,即将其转移到其它衬底(比如硅片、一些纳米结构等)上,在转移过程中不可避免的给石墨烯造成污染和破坏,降低器件性能。

  发明内容

  本发明的目的在于提供一种在单层石墨烯膜上原位可控生长三角环银纳米颗粒阵列及其方法。

  实现本发明目的的技术方案是:一种银三角环纳米颗粒阵列/单层石墨烯薄膜复合材料及其制备方法,主要步骤如下:

  (1)在铜箔上CVD生长单层石墨烯薄膜;

  (2)在载玻片上制备单层PS球胶体薄膜;

  (3)将单层PS球胶体薄膜转移至生长有石墨烯膜薄膜的铜箔上,获取单层PS球模板/石墨烯膜/铜箔;

  (4)在单层PS球模板/石墨烯膜/ 铜箔上采用热蒸发沉积银,沉积过程中样品保持匀速转动;

  (5)去除沉积银后的PS球模板,即可获得所述的银三角环纳米颗粒阵列/单层石墨烯薄膜复合材料。

  较佳的,采用常压CVD,以铜箔作为衬底和催化剂生长单层石墨烯薄膜。

  具体的,首先在氢气和氩气混合气氛中退火去除铜箔表面氧化层,然后通入甲烷,采用CVD生长单层石墨烯薄膜,最后在氩气保护下冷却至室温。

  较佳的,采用气-液-固相界面自组装方法在载玻片上制备单层PS球胶体薄膜。

  具体的,将PS球(直径1 μm)悬浮液(2.5 wt%)和乙醇按体积比1:1超声均匀混合,取洁净载玻片,在载玻片上采用气-液-固相界面自组装方法制备单层PS球胶体薄膜。

  较佳的,将载有单层PS球胶体薄膜的载玻片缓慢以45°浸入水中,将单层PS球胶体薄膜转移至生长有石墨烯膜薄膜的铜箔上,获得单层PS球模板/石墨烯膜/铜箔。

  较佳的,对获取的单层PS球模板/石墨烯膜/铜箔采用恒温箱进行加热处理以改变球间三角缝隙尺寸。

  具体的,加热处理温度为110℃,时间<20min。

  较佳的,采用热蒸发法沉积银,沉积厚度为100 nm。

  较佳的,沉积过程中样品保持匀速转动,其转速为10r/min~90r/min,更佳的转速为30r/min。

  较佳的,通过在有机溶剂中浸泡去除沉积银后的PS球模板。

  具体的,有机溶剂为CH2Cl2,浸泡时间为10 min。

  与现有技术相比,本发明的创新之处为:(1)制备的银三角环纳米颗粒阵列/单层石墨烯复合材料在结构上是独特的,结合了银纳米环和单层石墨烯二者的协同作用,将比单一材料的光电性能更好。(2)在生长单层石墨烯的铜箔上原位制备纳米结构,避免了对石墨烯的转移和破坏。

  本发明的优越之处在下面的附图说明具体实施方式中将进一步进行阐述。

  附图说明

  图1为本发明制备银三角环纳米颗粒阵列/单层石墨烯薄膜复合材料的工艺路线示意图。

  图2为本发明实施例1中所用直径1 μmPS球模板(a)及其蒸银后样品的形貌(b)。

  图3为本发明实施例1制备的银纳米环颗粒阵列/单层石墨烯膜/铜箔的形貌。

  图4为本发明实施例1银纳米环颗粒阵列/单层石墨烯膜/铜箔对R6G分子的SERS图谱。

  图5为本发明实施例2制备的银纳米环颗粒阵列/单层石墨烯膜/铜箔的形貌。

  具体实施方式

  本发明制备的银纳米环颗粒阵列/单层石墨烯膜,即在单层石墨烯上可控生长银纳米环颗粒阵列,结合了银纳米环阵列和单层石墨烯各自优势及二者的协同作用,有优异的SERS性能,同时是在生长石墨烯的铜箔上原位合成的,避免了石墨烯的破损,保证了其完整性和洁净性。

  工艺路线示意图见图1。首先,在铜箔上生长单层石墨烯膜;其次,组装单层PS球模板并将其转移至附有单层石墨烯膜的铜箔上;然后,利用热蒸发沉积银,沉积过程中样品保持匀速转动;最后,去除PS球即可获得单层石墨烯膜上的银三角环纳米颗粒阵列。阵列的结构参数可以通过工艺参数进行调控。

  实施例1

  (1)CVD生长单层石墨烯薄膜。以25 μm厚的铜箔(Alfa Aesar,99.8%)作为催化剂和衬底,放入管式炉中间,在氩气(300 sccm)和氢气(100 sccm)混合气氛下于1000 ℃退火30min,除去铜箔表面氧化层;接着通入甲烷(10 sccm)生长30 min,关闭氢气和甲烷在氩气气氛保护下冷却至室温。(2)组装PS球模板/单层石墨烯膜/铜箔。直径1 μm的PS球悬浮液(2.5wt%)、乙醇按体积比1:1超声混合均匀,在洁净载玻片上加适量去离子水形成大面积薄层水膜,取PS球混合液约0.1 mL至水膜表面,PS球自发在气液固界面自组装形成平方厘米量级的单层胶体晶体薄膜,将此载玻片缓慢以45°浸入水中,胶体球薄膜就能漂浮到水面,用生长石墨烯的铜箔捞起,然后将PS球模板于110°烘烤10 min。(3)热蒸发沉积银。采用热蒸发对PS球模板沉积银100 nm,沉积银时热蒸发设备真空度维持在2×10-4pa。沉积过程中样品保持匀速转动(30 r/min)。(4)去模板。将沉积银后的样品浸泡在CH2Cl2溶剂中10 min去除PS球,即可获得单层石墨烯膜上的银三角环纳米颗粒阵列。

  采用日本日立公司的S-4800场发射扫描电子显微镜(FESEM)观察样品形貌,英国Renishwa公司的In Via激光共焦拉曼光谱仪分析样品的光学性质。

  图2为本发明实施例1中直径1 μm的PS球模板及蒸银之后的PS球模板形貌。图2a为沉积银之前的PS球模板形貌,胶体球整体规则排列,胶体球之间有三角缝隙。图2b为沉积银之后的PS球模板形貌,胶体球呈现六方紧密排列,PS球壳层有银纳米颗粒包覆,表面粗糙。

  图3为本发明实例1制备的单层石墨烯膜上银三角环纳米颗粒阵列的形貌。图3a为去除沉积银之后的胶体球模板(图2b)得到的银纳米环阵列形貌。从图3a中可以观察到去除胶体球壳后,该阵列由外周呈正三角形(边长约300 nm),内周呈圆形(直径约100 nm)的纳米颗粒构成,阵列具有十分规则的周期性。

  图4为本发明实施例1单层石墨烯膜上银三角环纳米颗粒阵列对R6G分子的SERS图谱。曲线1和2分别对应银三角环纳米颗粒阵列和硅片上的银三角环纳米颗粒阵列(没有单层石墨烯)的SERS谱。结果表明,二种衬底都具有很大增强效应,反应出银三角环纳米颗粒阵列本身具有大的物理增强,这种增强来自于两方面:一是圆环结构具有纳米级间隙,是增强“热点”;二是阵列周期性结构能使光场耦合,增大拉曼散射截面。两种衬底相比,银纳米环颗粒阵列/单层石墨烯膜具有更好增强效果,反应出石墨烯在增强效应中发挥了作用,这种作用也有两方面:一是石墨烯本身具有大的化学增强能力,可与银颗粒大的物理增强进行联合增强(二者对增强因子是相乘关系);二是石墨烯对含苯环的芳香族分子能通过π-π相互作用提高此类分子的吸附能力。

  实施例2

  其他步骤和工艺条件与实施例1相同。不同的是,在步骤(2)中获得的两个单层PS球模板分别进行不加热处理和110℃/20min条件下的加热处理,分别获得不加热处理条件下银三角环纳米颗粒阵列/单层石墨烯膜/铜箔形貌(图5a)和110℃/20min加热条件下的银三角环纳米颗粒阵列/单层石墨烯膜/铜箔形貌(图5b)。

  对比图5a和图5b,同时结合图3,我们发现沉积银之前的PS球模板热处理对纳米环的尺寸有着明显影响。热处理时间长,三角环外周尺寸变小,形状从三角变成近圆形,而内周尺寸变大。三角环形成机理:热蒸发过程中,银原子做直线运动,在三角缝隙处暴露的石墨烯表面沉积银原子,使三角环外周呈三角形;同时,由于样品旋转和阴影效应,形成圆环;PS球加热时间长,球之间三角缝隙变小导致三角环外周边长减小,同时阴影效应增加导致圆环变大。

  根据上述研究结果可知:在 CVD工艺生长的单层石墨烯膜上原位合成纳米颗粒阵列的方法是可行的,该工艺结合了单层石墨烯和周期性的金属纳米颗粒阵列各自的优势,SERS测试表明这种石墨烯基复合材料具有更加优异的性能;同时制备流程无污染,重复性好,可用于大面积合成,有望进一步应用到实际中。

《银三角环纳米颗粒阵列/单层石墨烯薄膜复合材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)