欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 一种异质结复合光催化剂及其制备方法和应用独创技术13392字

一种异质结复合光催化剂及其制备方法和应用

2021-02-22 09:29:38

一种异质结复合光催化剂及其制备方法和应用

  技术领域

  本发明涉及一种异质结复合光催化剂及其制备方法和应用,具体涉及一种rGO气凝胶负载GQDs/NiFe2O4异质结复合光催化剂及其制备方法和应用,属于光催化技术领域

  背景技术

  目前世界能源的主要来源是石油,其使用将释放大量的二氧化碳和其他有害物质,给环境带来了巨大的损害和污染,因此急需发展清洁能源来代替传统化石能源。光催化有机物降解和光电催化水分解是满足未来清洁能源可持续利用的很有前景的技术。

  尖晶石型铁氧体(NiFe2O4)作为一种典型的窄禁带(~2eV)半导体材料,可以响应可见光光谱,使充分利用太阳能进行光催化分解水和降解有机污染物成为可能,因此受到广泛的关注。然而,纯的NiFe2O4光催化剂由于量子效率较差,导致光生载流子寿命短,复合率较高,限制了其在光电催化领域的应用。通过制备基于NiFe2O4的异质结复合材料可以促进载流子的分离,提高光催化活性。

  石墨烯量子点(GQDs)作为一种新型的0D碳材料,尺寸一般在10nm以下,通常表现出优异的光电性能,同时还表现出量子限域效应和边界效应,而引发出一些新的物理性质,因此广泛应用于光催化领域。GQDs修饰的半导体光催化剂通常表现出更优异的光催化性能,如ZnO/GQDs、Zn-BiVO4/GQDs等复合材料显示出快速的电子分离效率,可提高在太阳光下的光降解有机污染物和催化水分解的效率。此外,研究表明,氮、硫杂原子对GQDs进行掺杂后,还能显著提高量子点的荧光性质,能够最大程度的提升半导体光催化剂的光催化活性。因此,将氮、硫杂原子掺杂后GQDs与NiFe2O4进行复合后,NiFe2O4的光催化活性会得到显著提高。

  3D石墨烯气凝胶由于具有独特的多孔结构、高比表面积、优异的机械性能和多维的电子传输路径被广泛应用于光电催化领域。将半导体纳米材料负载到石墨烯片层上,当材料被光照射时,光生电子可以进入石墨烯中,能够有效防止光生电子和空穴的复合,从而提高光催化效率。相比未掺杂的石墨烯而言,杂原子掺杂的石墨烯具有更优异的电子传导能力和光吸收性能,这有利于进一步提升光催化效率。

  虽然石墨烯气凝胶负载半导体在光催化领域的应用取得了一定的进步,但是关于可控制备3D三元杂化气凝胶复合材料作为多功能催化剂用于光降解有机污染物和水分解很少有人报道,尤其是将掺杂的GQDs与NiFe2O4形成异质结复合材料后,再负载到掺杂的石墨烯上形成3D三元复合气凝胶材料用于光降解有机污染物和水分解此前未有报道。

  发明内容

  本发明所要解决的技术问题是:提供一种可控的3D三元杂化气凝胶复合材料作为光催化剂的制备方法,以提高气凝胶光催化剂的可见光利用率、光催化活性、机械强度等。

  为了解决上述问题,本发明通过下述技术方案来实现:

  一种异质结复合光催化剂的制备方法,其特征在于,包括如下步骤:

  步骤1):将Ni(NO3)2·6H2O、Fe(NO3)3·9H2O、乌洛托品(HMTA)和柠檬酸三钠溶于去离子水中,搅拌溶解得到透明溶液,再加入石墨烯量子点(GQDs)水溶液,将该混合溶液倒入水热反应釜中,通过水热法制备异质结构的GQDs/NiFe2O4纳米片复合材料;

  步骤2):将GQDs/NiFe2O4纳米片复合材料加入到氧化石墨烯(GO)水溶液中,再加入交联剂和还原剂,通过低温加热反应使GO还原为rGO,并形成3D网络结构,同时GQDs/NiFe2O4纳米片复合材料负载在石墨烯片层上,得到具有3D网络结构的rGO气凝胶负载GQDs/NiFe2O4异质结复合光催化剂。

  优选地,所述步骤1)中的石墨烯量子点为氮、硫共掺杂的石墨烯量子点;所述石墨烯量子点的浓度为0.05~0.2mg/mL,所述Ni(NO3)2·6H2O、Fe(NO3)3·9H2O、乌洛托品、柠檬酸三钠与去离子水的摩尔比为1:2:(12~24):(3~12):(1.5~5),Ni(NO3)2·6H2O与石墨烯量子点溶液的比例为1mmol:(5~50)mL。

  优选地,所述步骤1)中石墨烯量子点的制备方法为:将柠檬酸和硫脲以摩尔比为1:1~5的比例溶于去离子水中,超声溶解形成透明溶液后,倒入水热反应釜进行水热反应;超声时间为30~60分钟,水热反应的温度为180~220℃,时间为8~16小时。

  优选地,所述步骤1)中,所述水热反应的温度为180~200℃,时间为10~20小时。

  优选地,所述步骤2)中氧化石墨烯的制备方法为:在干净的250mL三颈烧瓶中加入0.5g硝酸钠和23mL浓硫酸,在冰水浴下进行机械搅拌;搅拌至硝酸钠完全溶解之后,加入1g石墨粉,再缓慢加入3g高锰酸钾,加入完毕之后,在35℃水浴中恒温;1小时后在缓慢搅拌下快速加入46mL去离子水,升温至98℃,维持15min后再缓慢加入170mL去离子水和5mL30wt%双氧水;搅拌1小时后,移去水浴,自然冷却至室温,收集反应液;对反应液进行离心,倒出上层清液——去离子水洗涤——再离心,如此反复;直至上层清液的pH为中性后,倒出上层清液,再用乙醇洗涤一次,离心,收集下层沉淀,放入真空烘箱中,于45℃下进行烘干,烘干后即得到产物氧化石墨;所述氧化石墨烯水溶液的浓度为2mg/mL;所述交联剂和还原剂为L-半胱氨酸;所述低温加热反应的温度为90~95℃,时间为1~3小时。

  优选地,所述步骤2)中GQDs/NiFe2O4纳米片复合材料与氧化石墨烯水溶液的比例为2mg:(1~4)mL。

  本发明还提供了上述异质结复合光催化剂的制备方法制得的异质结复合光催化剂,其特征在于,所述异质结复合光催化剂具有3D多孔网络结构及多维的电子传输路径。

  本发明还提供了上述异质结复合光催化剂在光电化学转换体系的工作电极材料、光催化降解有机污染物的催化材料中的应用。

  本发明采用原位合成技术,在NiFe2O4纳米片的制备过程中直接加入石墨烯量子点,将石墨烯量子点植入到NiFe2O4纳米片中,形成稳定的异质结构,再与石墨烯进行复合,形成稳定的三元3D复合气凝胶光催化材料,量子点能够快速转移NiFe2O4光生电子到催化剂表面并参与反应,石墨烯气凝胶的高导电性提供了多维电子传输路径,提高了光生电子-空穴的分离速率,降低了光生电子-空穴的复合速率,同时增强了NiFe2O4光催化剂对可见光的响应范围。

  与现有技术相比,本发明具有以下有益效果:

  1.本发明以石墨烯气凝胶三维空间结构为基底,GQDs/NiFe2O4异质结纳

  米片均匀负载在石墨烯表面,多孔的网络结构能够为GQDs/NiFe2O4异质结提供更多的附着位点和多维的电子传输路径,同时对GQDs/NiFe2O4异质结的堆叠起到一定的抑制作用。该复合光催化剂在可见光驱动下的光催化活性得到提高。

  2.本发明采用石墨烯量子点修饰NiFe2O4,利用量子点优异的光电性能,

  有效提高了可见光的利用率,同时能快速转移光生电子到石墨烯表面,达到抑制光生电子-空穴复合的效果。杂原子对石墨烯量子点和石墨烯气凝胶掺杂后,使其催化活性得到进一步提高。

  3.本发明制备得到的rGO气凝胶负载GQDs/NiFe2O4异质结复合光催化剂

  可以作为可磁性回收的双功能光催化剂应用在光催化降解有机污染物和光催化水分解等领域,具有高效性和稳定性。本发明为大量开发其他三元3D光催化剂开辟了新道路。

  4.本发明工艺简单,反应条件温和且易于控制,具有良好的应用前景。

  附图说明

  图1为实施例1制备的rGO气凝胶负载GQDs/NiFe2O4异质结复合光催化材料的SEM图;

  图2为实施例1制备的rGO气凝胶负载GQDs/NiFe2O4异质结复合光催化材料的TEM图;

  图3为实施例1-5所制备的样品在可见光诱导下光降解罗丹明B的效果对比图;

  图4为实施例1-4所制备的样品在0.01M Na2SO4电解质中间歇性光电催化水分解的极化曲线。

  具体实施方式

  为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。

  实施例1

  1.制备石墨烯量子点(GQDs)溶液:

  将2.52g柠檬酸与2.76g硫脲溶于100mL去离子水中,搅拌使其溶解,形成均匀的溶液,然后转移到容积为150mL的水热釜中,180℃下反应6小时。反应结束,冷却至室温,用旋转蒸发仪除去溶剂,向残余物中加入无水乙醇,再以10000r/min的转速离心5min,则得到氮、硫共掺杂的石墨烯量子点。

  2.制备GQDs/NiFe2O4异质结复合光催化剂:

  将2mmol Ni(NO3)2·6H2O、4mmol Fe(NO3)3·9H2O、12mmol的乌洛托品(HMTA)和2mmol的柠檬酸三钠溶解于80mL的水中,磁力搅拌得到透明溶液;随后将20mL的石墨烯量子点溶液(0.1mg/mL)加入到上述混合溶液中,继续搅拌30min后,倒入水热釜中,并将水热釜放入180℃的烘箱中保温反应12小时。反应结束后,自然冷却至室温后,GQDs/NiFe2O4异质结复合光催化剂通过磁性从反应液中分离出来,并用去离子水和无水乙醇洗涤三次后,在40℃的真空烘箱中烘干,得到固体的GQDs/NiFe2O4异质结复合光催化剂。

  3.制备氧化石墨烯(GO)溶液:

  氧化石墨的制备方法参照Hummurs方法(W.S.Hummers Jr.,R.E.Offeman,J.Am.Chem.Soc.80(6)(1958).1339-1339.),并进行适当改性。首先以天然石墨粉为原料制备氧化石墨,之后在去离子水中通过超声分散的方法将氧化石墨剥离成均匀分散的GO片层。制备氧化石墨的具体实验步骤如下:向三口反应瓶中加入46mL浓硫酸(98wt%H2SO4),并将反应瓶置于冰水浴中剧烈搅拌,然后称取1g NaNO3加入反应瓶中,继续冰水浴下搅拌10min,待NaNO3完全溶解,再称取2g天然石墨粉加入,维持冰水浴不变,称取6g KMnO4分批缓慢加入,保持反应温度控制在5℃以下,添加完毕后继续在冰水浴中搅拌30min至温度不再上升。然后移除冰水浴,将反应瓶置于35±3℃的水浴中反应1小时,反应液呈粘稠墨绿色,缓慢加入92mL去离子水,反应体系温度升高,控制温度不要超过98℃,并在98℃油浴下反应15min,趁热加入300mL去离子水,撤掉油浴,待反应液温度降到室温,加入10mL 30%H2O2(缓慢加入),继续搅拌1小时后用转速为5000r/min的离心机离心,倒掉上层清液,下层沉淀再用10wt%HCl溶液洗涤离心,重复洗涤离心10次,最后用去离子水洗涤离心,直至上层清液pH值为中性。将得到的沉淀物在80℃的烘箱中干燥过夜,得到固体氧化石墨。

  GO的水溶液分散液由氧化石墨分散于水中后超声得到,具体实验步骤如下:称取200mg氧化石墨分散于100mL去离子水中,超声1小时即得到棕褐色的GO分散液,GO浓度为2mg/mL。

  4.制备rGO气凝胶负载GQDs/NiFe2O4异质结复合光催化剂:

  取10mL GO溶液(2mg/mL)置于容量为20mL的玻璃瓶内,加入200mg L-半胱氨酸,搅拌溶解后,加入10mg步骤3中制备的GQDs/NiFe2O4异质结复合光催化剂,置于超声仪内超声处理15min使体系中GO与L-半胱氨酸和GQDs/NiFe2O4充分吸附并分散均匀。之后将玻璃瓶置于95℃油浴中保温反应3小时。待产物冷却后进行多次浸洗,每次浸洗间隔时间应大于30min。随后将样品放入-20℃冰箱冰冻24h,进行冷冻干燥后得到三元复合气凝胶光催化剂。

  图1为本实施例制备的rGO气凝胶负载GQDs/NiFe2O4异质结复合光催化材料的SEM图。从图1中可知,气凝胶具有3D多层级多孔结构,提供了多维的电子传输路径。图2为本实施例制备的rGO气凝胶负载GQDs/NiFe2O4异质结复合光催化材料的TEM图。从图2中可知,GQDs均匀负载在NiFe2O4纳米片的表面。

  实施例2

  本实施例与实施例1的区别在于,使用原位合成法合成GQDs/NiFe2O4异质结复合材料时,GQDs的添加量为5mL,其它步骤完全相同。

  实施例3

  本实施例与实施例1的区别在于,使用原位合成法合成GQDs/NiFe2O4异质结复合材料时,GQDs的添加量为10mL,其它步骤完全相同。

  实施例4

  本实施例与实施例1的区别在于,使用原位合成法合成GQDs/NiFe2O4异质结复合材料时,GQDs的添加量为15mL,其它步骤完全相同。

  实施例5

  本实施例与实施例1的区别在于,使用原位合成法合成GQDs/NiFe2O4异质结复合材料时,GQDs的添加量为25mL,其它步骤完全相同。

《一种异质结复合光催化剂及其制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)