欢迎光临小豌豆知识网!
当前位置:首页 > 物理技术 > 摄像光波> 制造半导体装置的方法以及光刻胶独创技术90938字

制造半导体装置的方法以及光刻胶

2021-02-01 11:53:47

制造半导体装置的方法以及光刻胶

  技术领域

  本公开涉及一种制造半导体装置的方法与光刻胶。

  背景技术

  由于各种电子组件(例如,晶体管、二极管、电阻器、电容器等)的集成密度的持续提高,半导体行业已经历快速增长。在很大程度上,集成密度的这一提高是源自最小特征大小(minimum feature size)的连番减小(例如,朝向20nm节点以下(sub-20nm node)缩减半导体工艺节点),而使更多的组件能够整合于所给定的区域中。随着近来对小型化、提高速度、增加频宽、降低功率损耗及缩短延迟的需求的增加,对更小且更具创造性的半导体管芯封装技术的需要也随着增加。

  随着半导体技术的进一步推进,经堆叠及接合的半导体装置已出现作为一种有效的替代选择,以进一步减小半导体装置的实体大小。在经堆叠的半导体装置中,例如逻辑、存储器、处理器电路等有源电路至少部分地在单独的衬底上制作后,然后再实体接合及电接合在一起以形成功能装置(functional device)。此种接合工艺利用精密的技术,且期望有所改进。

  发明内容

  根据一些实施例,制造半导体装置的方法包括:在半导体衬底之上施加光刻胶,所述光刻胶包含检测添加剂;对所述光刻胶进行曝光及显影;以及在对所述光刻胶进行显影之后检查所述光刻胶,其中所述检测添加剂在所述检查所述光刻胶期间发荧光。

  根据一些实施例,制造半导体装置的方法包括:将光刻胶聚合物树脂放置在光刻胶溶剂中;将光酸产生剂放置在所述光刻胶溶剂中;将姜黄色素放置在所述光刻胶溶剂中;以及混合所述光刻胶聚合物树脂、所述光酸产生剂、所述姜黄色素以及所述光刻胶溶剂以形成光刻胶。

  根据一些实施例,光刻胶包括:光刻胶聚合物树脂;光活性化合物;以及检测添加剂。所述检测添加剂在所述光刻胶内的浓度在0.01重量%与0.03重量%之间。

  附图说明

  结合附图阅读以下详细说明会最好地理解本公开的各个方面。应注意,根据本行业中的标准惯例,各种特征并非按比例绘制。事实上,为论述清晰起见,可任意增大或减小各种特征的尺寸。

  图1根据一些实施例绘示穿孔的形成。

  图2示出根据一些实施例的半导体装置。

  图3根据一些实施例绘示放置半导体装置于穿孔之间。

  图4根据一些实施例绘示包封的步骤。

  图5根据一些实施例绘示光刻胶的设置。

  图6根据一些实施例绘示对光刻胶进行成像。

  图7示出根据一些实施例的显影工艺。

  图8示出根据一些实施例的显影后检查工艺(after development inspectionprocess)。

  图9根据一些实施例示出重布线层的形成。

  图10示出根据一些实施例的剥离工艺。

  图11根据一些实施例绘示第一封装的放置。

  图12示出根据一些实施例的单体化(singulation)工艺。

  具体实施方式

  以下公开内容提供用于实作本发明的不同特征的许多不同的实施例或实例。以下阐述组件及排列的具体实例以简化本公开。当然,这些仅为实例而非旨在进行限制。举例来说,在以下说明中,在第二特征之上或第二特征上形成第一特征可包括其中第一特征与第二特征被形成为直接接触的实施例,且也可包括其中第一特征与第二特征之间可形成附加特征从而使得第一特征与第二特征可不直接接触的实施例。另外,本公开在各种实例中可重复使用参考编号和/或字母。此种重复使用是为了简明及清晰起见,且自身并不表示所讨论的各个实施例和/或配置之间的关系。

  此外,为易于说明,本文中可能使用例如“在...下方(beneath)”、“在...下面(below)”、“下部的(lower)”、“上方(above)”、“上部的(upper)”等空间相对性用语来阐述图中所示的一个元件或特征与另一(其他)元件或特征的关系。所述空间相对性用语旨在除图中所绘示的取向外还囊括装置在使用或操作中的不同取向。设备可具有其他取向(旋转90度或其他取向),且本文中所用的空间相对性描述语可同样相应地进行解释。

  现在将阐述实施例,在所述实施例中在光刻胶内使用检测添加剂以便增大后续显影后检查工艺的对比度。本文中所述的实施例是对于小于20nm(例如,7nm)的技术节点阐述的。然而,所述实施例并不仅限于这些工艺节点,且可用于各种应用中。

  现在参照图1,图1示出了载体衬底101,在载体衬底101上方具有粘合剂层103、聚合物层105及第一晶种层107。载体衬底101包含例如硅系材料(例如玻璃或氧化硅)或其他材料(例如氧化铝)或这些材料中的任意者的组合等。载体衬底101为平面的,以接纳例如第一半导体装置201及第二半导体装置301(在图1中未示出,但在以下参考图2至图3来说明及论述)等半导体装置的贴合。

  粘合剂层103放置在载体衬底101上,以辅助上覆结构(例如,聚合物层105)的粘合。在实施例中,粘合剂层103可包含紫外胶(ultra-violet glue),所述紫外胶在暴露至紫外光时会丧失其粘合性质。然而,也可使用其他类型的粘合剂,例如压敏(pressuresensitive)粘合剂、可辐射固化(radiation curable)粘合剂、环氧树脂或这些的组合等。可将粘合剂层103以在压力下易于变形的半液体形式或凝胶形式放置在载体衬底101上。

  聚合物层105放置在粘合剂层103上方,且一旦第一半导体装置201及第二半导体装置301已被贴合之后,聚合物层105便用于提供对例如第一半导体装置201及第二半导体装置301的保护。在实施例中,聚合物层105可为聚苯并恶唑(polybenzoxazole,PBO),但也可利用例如聚酰亚胺或聚酰亚胺衍生物、阻焊剂(Solder Resistance,SR)或味之素构成膜(Ajinomoto build-up film,ABF)等任意合适的材料。可使用例如旋转涂布工艺将聚合物层105形成至约2μm与约15μm之间(例如约5μm)的厚度,但可使用任何合适的方法及厚度。

  第一晶种层107形成在聚合物层105上方。在实施例中,第一晶种层107为导电材料的薄层,其有助于在后续处理步骤期间形成更厚的层。第一晶种层107可包含约厚的钛层,以及约厚的铜层。可依据所期望的材料而使用例如溅射工艺、蒸镀工艺或等离子体增强型化学气相沉积(PECVD)工艺等工艺来形成第一晶种层107。第一晶种层107可被形成为具有约0.3μm与约1μm之间(例如约0.5μm)的厚度。

  图1还示出将光刻胶109放置在第一晶种层107上方及将光刻胶109图案化。在实施例中,可使用例如旋转涂布技术将光刻胶109放置在第一晶种层107上而具有约50μm与约250μm之间(例如约120μm)的高度。一旦就位,接着便可通过以下方式将光刻胶109图案化:将光刻胶109暴露于图案化能量源(例如,图案化光源)以引发化学反应,从而引发光刻胶109的被暴露于图案化光源的那些部分的物理变化。然后对被暴露光刻胶109施加显影剂,以利用所述物理变化并依据所期望的图案而选择性地移除光刻胶109的被暴露部分或光刻胶109的未暴露部分。

  在实施例中,形成到光刻胶109中的图案是也被称为穿孔、衬底穿孔、绝缘体穿孔或InFO穿孔的通孔111的图案。通孔111以此种放置方式被形成为位于例如第一半导体装置201及第二半导体装置301等随后贴合的装置的不同侧上。然而,可利用通孔111的图案的任何合适的布置,例如被定位成使得第一半导体装置201及第二半导体装置301被放置在通孔111的相对侧上。

  在实施例中,通孔111形成于光刻胶109内。在实施例中,通孔111包含一种或多种导电材料(例如铜、钨或其他导电金属等),且可例如通过电镀、无电镀覆等方法来形成。在实施例中,使用电镀工艺,在所述电镀工艺中,将第一晶种层107及光刻胶109浸没或浸渍在电镀溶液中。第一晶种层107的表面电连接到外部直流(DC)电源的负极侧(negativeside),以使得第一晶种层107在电镀工艺中用作阴极。实心导电阳极(例如铜阳极)也浸渍在所述溶液中并将所述实心导电阳极贴合到电源的正极侧。来自阳极的原子溶解在溶液中,阴极(例如,第一晶种层107)从所述溶液获取所溶解的原子,从而镀覆第一晶种层107的在光刻胶109的开口中暴露出来的导电区域。

  一旦已使用光刻胶109及第一晶种层107形成通孔111,便可使用合适的移除工艺(在图1中未示出,但见于以下图3中)来移除光刻胶109。在实施例中,可使用等离子体灰化工艺来移除光刻胶109,从而可提高光刻胶109的温度直至光刻胶109经历热分解且可被移除。然而,可利用任何其他合适的工艺,例如湿式剥离。移除光刻胶109之后,可暴露出第一晶种层107的下伏部分。

  一旦被暴露之后,便可执行第一晶种层107的被暴露部分的移除(在图1中未示出,但见于以下图3中)。在实施例中,可通过例如湿式蚀刻工艺或干式蚀刻工艺来移除第一晶种层107的被暴露部分(例如,未被通孔111覆盖的那些部分)。举例来说,在干式蚀刻工艺中,可使用通孔111作为掩模将反应剂朝第一晶种层107引导。在另一实施例中,可喷射蚀刻剂或以其他方式使蚀刻剂与第一晶种层107接触,以移除第一晶种层107的被暴露部分。在已蚀刻掉第一晶种层107的被暴露部分之后,在通孔111之间暴露出聚合物层105的一部分。

  图2示出将贴合到通孔111之间的聚合物层105(在图2中未示出,但在以下参照图3示出及阐述)的第一半导体装置201。在实施例中,第一半导体装置201包括第一衬底203、第一有源装置(未各别示出)、第一金属化层205、第一接触垫207、第一钝化层211及第一外部连接件209。第一衬底203可包含经掺杂或未经掺杂的块体硅、或绝缘体上覆硅(silicon-on-insulator,SOI)衬底的有源层。一般来说,绝缘体上覆硅衬底包含一层半导体材料,例如硅、锗、硅锗、绝缘体上覆硅、绝缘体上覆硅锗(silicon germanium on insulator,SGOI)或其组合。可使用的其他衬底包括多层式衬底、梯度衬底(gradient substrate)、或混合取向衬底(hybrid orientation substrate)。

  第一有源装置包括可用来产生第一半导体装置201的设计的所期望结构需求及功能需求的各种有源装置及无源装置(例如电容器、电阻器、电感器等)。可使用任何合适的方法在第一衬底203内或第一衬底203上形成第一有源装置。

  第一金属化层205形成在第一衬底203及第一有源装置上方,且被设计成连接所述各种有源装置以形成功能性电路系统。在实施例中,第一金属化层205是由交替的介电材料层与导电材料层形成,且可通过任何合适的工艺(例如沉积、镶嵌、双镶嵌等)形成。在实施例中,可存在通过至少一个层间介电层(interlayer dielectric layer,ILD)而与第一衬底203分离的四个金属化层,但第一金属化层205的精确数量相依于第一半导体装置201的设计。

  第一接触垫207可形成于第一金属化层205上方且与第一金属化层205电接触。第一接触垫207可包含铝,但可使用其他材料,例如铜。第一接触垫207可使用沉积工艺(例如溅射)来形成,以形成材料层(图中未示出),且然后可通过合适的工艺(例如光刻掩蔽及蚀刻)来移除所述材料层的一些部分,以形成第一接触垫207。然而,可利用任何其他合适的工艺来形成第一接触垫207。第一接触垫207可被形成为具有约0.5μm与约4μm之间(例如约1.45μm)的厚度。

  第一钝化层211可形成于第一衬底203上、第一金属化层205及第一接触垫207上方。第一钝化层211可由例如氧化硅、氮化硅、低k介电质(例如,掺杂碳的氧化物)、极低k介电质(例如,掺杂多孔碳的二氧化硅)、其组合等一或多种合适的介电材料制成。第一钝化层211可通过例如化学气相沉积(chemical vapor deposition,CVD)等工艺形成,但可使用任何合适的工艺,且第一钝化层211可具有约0.5μm与约5μm之间(例如,约)的厚度。

  第一外部连接件209可被形成为提供导电区以实现第一接触垫207与例如第一重布线层501(在图2中未示出,但在以下参照图5示出及阐述)之间的接触。在实施例中,第一外部连接件209可为导电柱,且可通过首先将光刻胶(图中未示出)形成在第一钝化层211上方并形成至约5μm与约20μm之间(例如约10μm)的厚度来形成。可将光刻胶图案化以暴露出第一钝化层的某些部分(导电柱将延伸穿过所述部分)。一旦图案化之后,便可接着使用所述光刻胶作为掩模来移除第一钝化层211的所期望部分,从而暴露出下伏第一接触垫207的将与第一外部连接件209接触的那些部分。

  第一外部连接件209可形成于第一钝化层211及光刻胶两者的开口内。第一外部连接件209可由导电材料(例如铜)形成,但也可使用其他导电材料,例如镍、金、或金属合金或这些的组合等。另外,第一外部连接件209可使用例如电镀等工艺来形成,通过所述第一外部连接件209电流流经第一接触垫207的期望形成第一外部连接件209的导电部分,且将第一接触垫207浸渍在溶液中。所述溶液及电流将例如铜沉积在开口内以填充及/或过度填充光刻胶的开口及第一钝化层211的开口,从而形成第一外部连接件209。然后可使用例如灰化工艺、化学机械抛光(chemical mechanical polish,CMP)工艺或这些的组合等来移除第一钝化层211的开口外部的过量导电材料及光刻胶。

  然而,如所属领域中的普通技术人员将知,用以形成第一外部连接件209的上述工艺仅为一个说明,且并不意在将实施例限制于此确切工艺。相反,上述工艺旨在仅为说明性的,可利用用于形成第一外部连接件209的任何合适的工艺。所有合适的工艺均旨在包含于本发明实施例的范围内。

  在第一衬底203的与第一金属化层205相对的侧上,可形成管芯贴合膜(dieattach film,DAF)213以辅助将第一半导体装置201贴合到聚合物层105。在实施例中,管芯贴合膜213为环氧树脂、酚树脂、丙烯酸橡胶、氧化硅填料或其组合,且使用层合技术来施加。然而,可利用任何其他合适的材料及形成方法。

  图3示出将第一半导体装置201与第二半导体装置301放置在聚合物层105上。在实施例中,第二半导体装置301可包括第二衬底303、第二有源装置(未各别示出)、第二金属化层305、第二接触垫307、第二钝化层311以及第二外部连接件309。在实施例中,第二衬底303、第二有源装置、第二金属化层305、第二接触垫307、第二钝化层311及第二外部连接件309可类似于第一衬底203、第一有源装置、第一金属化层205、第一接触垫207、第一钝化层211、及第一外部连接件209,但他们也可彼此相异。

  在实施例中,可使用例如拾取及放置工艺(pick and place process)将第一半导体装置201及第二半导体装置301放置到聚合物层105上。然而,也可利用放置第一半导体装置201及第二半导体装置301的任何其他方法。

  图4示出通孔111、第一半导体装置201及第二半导体装置301的包封。可在模制装置(在图4中未各别示出)中执行包封,所述模制装置可包括顶部模制部分及可与所述顶部模制部分分离的底部模制部分。当顶部模制部分降低至相邻于底部模制部分时,可为载体衬底101、通孔111、第一半导体装置201、及第二半导体装置301形成模制空腔。

  在包封工艺期间,可相邻于底部模制部分放置顶部模制部分,从而将载体衬底101、通孔111、第一半导体装置201及第二半导体装置301封闭在模制空腔内。一旦被封闭之后,顶部模制部分及底部模制部分便可形成气密密封以控制气体流入模制空腔及从模制空腔流出。一旦密封之后,便可将包封体401放置在模制空腔内。包封体401可为模制化合物树脂,例如聚酰亚胺、聚苯硫醚(Polyphenylene sulfide,PPS)、聚醚醚酮(polyetheretherketone,PEEK)、聚醚砜(Polyethersulfone,PES)、耐热晶体树脂或这些的组合等。可在顶部模制部分与底部模制部分对准之前将包封体401放置在模制空腔内,抑或可通过注射口将包封体401注射到模制空腔内。

  一旦包封体401已被放置到模制空腔内而使得包封体401包封载体衬底101、通孔111、第一半导体装置201及第二半导体装置301之后,便可将包封体401固化以硬化包封体401来实现最佳保护。确切固化工艺至少部分地相依于为包封体401选择的特定材料。在选择模制化合物作为包封体401的实施例中,可通过例如将包封体401加热到约100℃与约130℃之间(例如约125℃)达约60秒到约3000秒(例如约600秒)的时间等工艺而发生固化。另外,在包封体401内可包含引发剂及/或催化剂以更好地控制固化工艺。

  然而,如所属领域中的普通技术人员将知,上述固化工艺仅为示例性工艺,而并不旨在限制当前实施例。可使用其他固化工艺,例如辐照或甚至使包封体401在周围环境温度下硬化。可使用任何合适的固化工艺,且所有此种工艺均旨在包含于本文所述实施例的范围内。

  图4还示出使包封体401薄化以暴露出通孔111、第一半导体装置201及第二半导体装置301以供进一步处理。可例如使用机械研磨工艺或化学机械抛光(CMP)工艺来执行变薄,从而利用化学蚀刻剂及磨料来使包封体401、第一半导体装置201及第二半导体装置301反应并研磨掉包封体401、第一半导体装置201及第二半导体装置301,直到通孔111、第一外部连接件209(位于第一半导体装置201上)及第二外部连接件309(位于第二半导体装置301上)已被暴露出。如此一来,第一半导体装置201、第二半导体装置301以及通孔111可具有也与包封体401共面的平面表面。

  然而,尽管上述化学机械抛光工艺被呈现为一个说明性实施例,但其并不旨在限制所述实施例。可使用任何其他合适的移除工艺来使包封体401、第一半导体装置201及第二半导体装置301薄化并暴露出通孔111。举例来说,可利用一系列化学蚀刻剂。可利用此工艺及任何其他合适的工艺来使包封体401、第一半导体装置201及第二半导体装置301薄化,且所有此种工艺均旨在包含于实施例的范围内。

  可选地,在已使包封体401薄化之后,通孔111、第一外部连接件209及第二外部连接件309可凹陷在包封体401内。在实施例中,可使用例如蚀刻工艺来使通孔111、第一外部连接件209及第二外部连接件309凹陷,所述蚀刻工艺使用对通孔111、第一外部连接件209及第二外部连接件309的材料(例如铜)具有选择性的蚀刻剂。通孔111、第一外部连接件209及第二外部连接件309可凹陷至约20μm与约300μm之间(例如约180μm)的深度。

  图5示出用于形成第一重布线层(redistribution layer,RDL)501的起始工艺的剖视图。在实施例中,可通过首先经由合适的形成工艺(例如化学气相沉积或溅射)形成钛铜合金的晶种层518来形成第一重布线层501。一旦晶种层518已被沉积,便可将光刻胶517置于晶种层518上以准备形成第一重布线层501。在实施例中,光刻胶517可以是化学增强型光刻胶,并且包括光刻胶溶剂中的光刻胶聚合物树脂以及一种或多种光活性化合物(photoactive compound,PACs)。在实施例中,光刻胶聚合物树脂可包括烃结构(例如,脂环烃结构),所述烃结构含有一个或多个基团,所述基团在与由光活性化合物生成的酸、碱或自由基混合时将分解(例如,酸不稳定基团(acid labile group))或以其他方式发生反应(如下文参照图6进一步描述)。在实施例中,烃结构包括形成光刻胶聚合物树脂的骨架的重复单元。此重复单元可包括丙烯酸酯类、甲基丙烯酸酯类、巴豆酯类(crotonic esters)、乙烯基酯类、马来酸二酯类(maleic diesters)、富马酸二酯类(fumaric diesters)、衣康酸二酯类(itaconic diesters)、(甲基)丙烯腈((meth)acrylonitrile)、(甲基)丙烯酰胺类((meth)acrylamides)、苯乙烯类(styrenes)、乙烯基醚类(vinyl ethers)或这些的组合等。

  可用于烃结构的重复单元的具体结构包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸异丙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸叔丁酯(tert-butyl acrylate)、丙烯酸正己酯(n-hexyl acrylate)、丙烯酸2-乙基己酯(2-ethylhexyl acrylate)、丙烯酸乙酰氧基乙酯(acetoxyethyl acrylate)、丙烯酸苯酯(phenyl acrylate)、丙烯酸2-羟乙酯(2-hydroxyethyl acrylate)、丙烯酸2-甲氧乙酯(2-methoxyethyl acrylate)、丙烯酸2-乙氧乙酯(2-ethoxyethyl acrylate)、丙烯酸2-(2-甲氧基乙氧基)乙酯(2-(2-methoxyethoxy)ethyl acrylate)、丙烯酸环己酯(cyclohexyl acrylate)、丙烯酸苄酯(benzyl acrylate)、(甲基)丙烯酸2-烷基-2-金刚烷酯(2-alkyl-2-adamantyl(meth)acrylate)或(甲基)丙烯酸二烷基(1-金刚烷基)甲酯(dialkyl(1-adamantyl)methyl(meth)acrylate)、甲基丙烯酸甲酯(methyl methacrylate)、甲基丙烯酸乙酯(ethylmethacrylate)、甲基丙烯酸正丙酯(n-propyl methacrylate)、甲基丙烯酸异丙酯(isopropyl methacrylate)、甲基丙烯酸正丁酯(n-butyl methacrylate)、甲基丙烯酸异丁酯(isobutyl methacrylate)、甲基丙烯酸叔丁酯(tert-butyl methacrylate)、甲基丙烯酸正己酯(n-hexyl methacrylate)、甲基丙烯酸2-乙基己酯(2-ethylhexylmethacrylate)、甲基丙烯酸乙酰氧基乙酯(acetoxyethyl methacrylate)、甲基丙烯酸苯酯(phenyl methacrylate)、甲基丙烯酸2-羟乙酯(2-hydroxyethyl methacrylate)、甲基丙烯酸2-甲氧乙酯(2-methoxyethyl methacrylate)、甲基丙烯酸2-乙氧乙酯(2-ethoxyethyl methacrylate)、甲基丙烯酸2-(2-甲氧基乙氧基)乙基(2-(2-methoxyethoxy)ethyl methacrylate)、甲基丙烯酸环己酯(cyclohexyl methacrylate)、甲基丙烯酸苄酯(benzyl methacrylate)、甲基丙烯酸3-氯-2-羟丙酯(3-chloro-2-hydroxypropyl methacrylate)、甲基丙烯酸3-乙酰氧基-2-羟丙酯(3-acetoxy-2-hydroxypropyl methacrylate)、甲基丙烯酸3-氯乙酰氧基-2-羟丙酯(3-chloroacetoxy-2-hydroxypropyl methacrylate)、巴豆酸丁酯(butyl crotonate)、巴豆酸己酯(hexylcrotonate)等。乙烯基酯类的实例包括乙酸乙烯酯(vinyl acetate)、丙酸乙烯酯(vinylpropionate)、丁酸乙烯酯(vinyl butylate)、甲氧基乙酸乙烯酯(vinylmethoxyacetate)、苯甲酸乙烯酯(vinyl benzoate)、马来酸二甲酯(dimethyl maleate)、马来酸二乙酯(diethyl maleate)、马来酸二丁酯(dibutyl maleate)、富马酸二甲酯(dimethyl fumarate)、富马酸二乙酯(diethyl fumarate)、富马酸二丁酯(dibutylfumarate)、衣康酸二甲酯(dimethyl itaconate)、衣康酸二乙酯(diethyl itaconate)、衣康酸二丁酯(dibutyl itaconate)、丙烯酰胺(acrylamide)、甲基丙烯酰胺(methylacrylamide)、乙基丙烯酰胺(ethyl acrylamide)、丙基丙烯酰胺(propyl acrylamide)、正丁基丙烯酰胺(n-butyl acrylamide)、叔丁基丙烯酰胺(tert-butyl acrylamide)、环己基丙烯酰胺(cyclohexyl acrylamide)、2-甲氧乙基丙烯酰胺(2-methoxyethylacrylamide)、二甲基丙烯酰胺(dimethyl acrylamide)、二乙基丙烯酰胺(diethylacrylamide)、苯基丙烯酰胺(phenyl acrylamide)、苄基丙烯酰胺(benzyl acrylamide)、甲基丙烯酰胺(methacrylamide)、甲基甲基丙烯酰胺(methyl methacrylamide)、乙基甲基丙烯酰胺(ethyl methacrylamide)、丙基甲基丙烯酰胺(propyl methacrylamide)、正丁基甲基丙烯酰胺(n-butyl methacrylamide)、叔丁基甲基丙烯酰胺(tert-butylmethacrylamide)、环己基甲基丙烯酰胺(cyclohexyl methacrylamide)、2-甲氧基乙基甲基丙烯酰胺(2-methoxyethyl methacrylamide)、二甲基甲基丙烯酰胺(dimethylmethacrylamide)、二乙基甲基丙烯酰胺(diethyl methacrylamide)、苯基甲基丙烯酰胺(phenyl methacrylamide)、苄基甲基丙烯酰胺(benzyl methacrylamide)、甲基乙烯基醚(methyl vinyl ether)、丁基乙烯基醚(butyl vinyl ether)、己基乙烯基醚(hexyl vinylether)、甲氧基乙基乙烯基醚(methoxyethyl vinyl ether)、二甲基氨基乙基乙烯基醚(dimethylaminoethyl vinyl ether)等。苯乙烯类的实例包括苯乙烯、甲基苯乙烯、二甲基苯乙烯、三甲基苯乙烯、乙基苯乙烯、异丙基苯乙烯、丁基苯乙烯、甲氧基苯乙烯、丁氧基苯乙烯、乙酰氧基苯乙烯(acetoxy styrene)、氯苯乙烯、二氯苯乙烯、溴苯乙烯、苯甲酸乙烯基甲酯(vinyl methyl benzoate)、α-甲基苯乙烯(α-methyl styrene)、马来酰亚胺(maleimide)、乙烯基吡啶(vinylpyridine)、乙烯基吡咯烷酮(vinylpyrrolidone)、乙烯基咔唑(vinylcarbazole)或这些的组合等。

  在实施例中,所述烃结构的重复单元也可具有取代入其中的单环或多环烃结构,或者所述单环或多环烃结构可以是所述重复单元,以便形成脂环烃结构。可使用的单环结构的具体实例包括双环烷、三环烷、四环烷、环戊烷、环己烷等。可以使用的多环结构的具体实例包括金刚烷(adamantine)、降冰片烷(norbornane)、异莰烷(isobornane)、三环癸烷、四环十二烷(tetracyclododecane)等。

  将分解、或者被称为离去基团(leaving group)、或者在其中光活性化合物是光酸产生剂(photoacid generator)的实施例中被称为酸不稳定基团的基团贴合到烃结构上,从而使其在暴露期间与光活性化合物生成的酸/碱/自由基发生反应。在实施例中,将分解的基团可以是羧酸基团、氟化醇基团(fluorinated alcohol group)、酚醇基团(phenolicalcohol group)、磺酸基团(sulfonic group)、磺酰胺基团(sulfonamide group)、磺酰亚氨基团(sulfonylimido group)、(烷基磺酰基)(烷基羰基)亚甲基((alkylsulfonyl)(alkylcarbonyl)methylene group)、(烷基磺酰基)(烷基-羰基)亚氨基((alkylsulfonyl)(alkyl-carbonyl)imido group)、双(烷基羰基)亚甲基(bis(alkylcarbonyl)methylenegroup)、双(烷基羰基)亚氨基(bis(alkylcarbonyl)imido group)、双(烷基磺酰基)亚甲基(bis(alkylsulfonyl)methylene group)、双(烷基磺酰基)亚氨基(bis(alkylsulfonyl)imido group)、三(烷基羰基)亚甲基(tris(alkylcarbonyl)methylene group)、三(烷基磺酰基)亚甲基(tris(alkylsulfonyl)methylene group)或这些的组合等。可用于氟化醇基团的具体基团包括氟化羟基烷基(fluorinated hydroxyalkyl group),例如六氟异丙醇基团(hexafluoroisopropanol group)。可用于羧酸基团的具体基团包括丙烯酸基团、甲基丙烯酸基团等。

  在实施例中,光刻胶聚合物树脂还可包括贴合到烃结构的其它基团,所述基团有助于改善可聚合树脂的各种性质。举例来说,将内酯基团(lactone group)包含在烃结构中有助于减少在光刻胶517已被显影后的线边缘粗糙度(line edge roughness)的量,从而有助于减少在显影期间发生的缺陷的数量。在实施例中,内酯基团可包括五元环到七元环,但可将任何合适的内酯结构用于内酯基团。

  光刻胶聚合物树脂还可包括可有助于增大光刻胶517与下伏结构的粘合性的基团。在实施例中,可使用极性基团来帮助提高粘合性,并且在本实施例中可使用的极性基团包括羟基、氰基(cyano group)等,但可使用任何合适的极性基团。

  可选地,光刻胶聚合物树脂还可包括一个或多个脂环烃结构(alicyclichydrocarbon structure),所述脂环烃结构也不含有将分解的基团。在实施例中,不含有将分解的基团的烃结构可包括以下结构,例如1-金刚烷基(甲基)丙烯酸酯(1-adamantyl(meth)acrylate)、三环癸基(甲基)丙烯酸酯(tricyclodecanyl(meth)acrylate)、环己基(甲基丙烯酸酯)(cyclohexayl (methacrylate))或这些的组合等。

  此外,光刻胶517还包括一种或多种光活性化合物。光活性化合物可以是光活性组分,例如光酸产生剂、光碱产生剂、自由基产生剂等。在光活性化合物为光酸产生剂的实施例中,光活性化合物可包含卤化三嗪(halogenated triazines)、鎓盐(onium salts)、重氮盐(diazonium salts)、芳族重氮盐(aromatic diazonium salts)、鏻盐(phosphoniumsalts)、锍盐(sulfonium salts)、錪盐(iodonium salts)、酰亚胺磺酸酯(imidesulfonate)、肟磺酸酯(oxime sulfonate)、重氮二砜(diazodisulfone)、二砜(disulfone)、邻硝基苯甲基磺酸酯(o-nitrobenzylsulfonate)、磺化酯(sulfonatedesters)、卤化磺酰氧基二甲酰亚胺(halogenerated sulfonyloxy dicarboximides)、重氮基二砜(diazodisulfones)、α-氰基氧基胺-磺酸酯(α-cyanooxyamine-sulfonates)、酰亚胺磺酸酯(imidesulfonates)、酮重氮基砜(ketodiazosulfones)、磺酰基重氮酯(sulfonyldiazoesters)、1,2-二(芳基磺酰基)肼(1,2-di(arylsulfonyl)hydrazines)、硝基苯甲酯(nitrobenzyl esters)、及s-三嗪衍生物(s-triazine derivatives)及这些的合适的组合等。在特定实施例中,光酸产生剂具有以下式:

  

  然而,可利用任何合适的光酸产生剂。

  可使用的光酸产生剂的具体实例包括α.-(三氟甲基磺酰氧基)-双环[2.2.1]庚-5-烯-2,3-二甲酰亚胺(α.-(trifluoromethylsulfonyloxy)-bicyclo[2.2.1]hept-5-ene-2,3-dicarbo-ximide,MDT)、N-羟基-萘二甲酰亚胺(N-hydroxy-naphthalimide,DDSN)、安息香甲苯磺酸酯(benzoin tosylate)、叔丁基苯基-α-(对甲苯磺酰氧基)-乙酸酯及叔丁基-α-(对甲苯磺酰氧基)-乙酸酯(t-butylphenyl-α-(p-toluenesulfonyloxy)-acetate)、三芳基锍(triarylsulfonium)及二芳基錪六氟锑酸酯(diaryliodoniumhexafluoroantimonates)、六氟砷酸酯(hexafluoroarsenates)、三氟甲磺酸酯(trifluoromethanesulfonates)、錪全氟辛磺酸酯(iodoniumperfluorooctanesulfonate)、N-樟脑磺酰氧基萘二甲酰亚胺(N-camphorsulfonyloxynaphthalimide)、N-五氟苯基磺酰氧基萘二甲酰亚胺(N-pentafluorophenylsulfonyloxynaphthalimide)、离子錪磺酸酯(例如二芳基錪(烷基或芳基)磺酸酯)及双-(二-叔丁基苯基)錪莰基磺酸酯(bis-(di-t-butylphenyl)iodoniumcamphanylsulfonate)、全氟烷磺酸酯(例如全氟戊烷磺酸酯(perfluoropentanesulfonate)、全氟辛烷磺酸酯(perfluorooctanesulfonate)、全氟甲磺酸酯(perfluoromethanesulfonate))、芳基(例如,苯基或苯甲基)三氟甲磺酸酯(例如三苯基锍三氟甲磺酸酯(perfluoromethanesulfonate)或双-(叔丁基苯基)錪三氟甲基磺酸酯(bis-(t-butylphenyl)iodonium triflate));连苯三酚衍生物(例如,连苯三酚的三甲磺酸酯(trimesylate of pyrogallol))、羟基酰亚胺的三氟甲磺酸酯(trifluoromethanesulfonate esters of hydroxyimides)、α,α'-双-磺酰基-重氮甲烷(α,α'-bis-sulfonyl-diazomethanes)、经硝基取代的苯甲基醇的磺酸酯(sulfonateesters of nitro-substituted benzyl alcohols)、萘醌-4-二叠氮(naphthoquinone-4-diazides)、烷基二砜(alkyl disulfones)等。

  在光活性化合物为自由基产生剂的实施例中,光活性化合物可包含正苯基甘氨酸(n-phenylglycine)、芳族酮(例如苯甲酮(benzophenone))、N,N'-四甲基-4,4'-二氨基苯甲酮(N,N'-tetramethyl-4,4'-diaminobenzophenone)、N,N'-四乙基-4,4'-二氨基苯甲酮(N,N'-tetraethyl-4,4'-diaminobenzophenone)、4-甲氧基-4’-二甲基氨基苯甲酮(4-methoxy-4'-dimethylaminobenzo-phenone)、3,3'-二甲基-4-甲氧基苯甲酮(3,3'-dimethyl-4-methoxybenzophenone)、p,p'-双(二甲基氨基)苯甲酮(p,p'-bis(dimethylamino)benzo-phenone)、p,p'-双(二乙基氨基)-苯甲酮(p,p'-bis(diethylamino)-benzophenone)、蒽醌(anthraquinone)、2-乙基蒽醌(2-ethylanthraquinone)、萘醌(naphthaquinone)及菲醌(phenanthraquinone)、安息香类(例如安息香(benzoin)、安息香甲基醚(benzoinmethylether)、安息香乙基醚(benzoinethylether)、安息香异丙醚(benzoinisopropylether)、安息香-正丁醚(benzoin-n-butylether)、安息香-苯基醚(benzoin-phenylether)、甲基安息香(methylbenzoin)及乙基安息香(ethybenzoin))、苯甲基衍生物(例如二苯甲基、苯甲基二苯基二砜(benzyldiphenyldisulfide)、及苯甲基二甲基缩酮(benzyldimethylketal))、吖啶衍生物(例如9-苯基吖啶(9-phenylacridine)及1,7-双(9-吖啶)庚烷(1,7-bis(9-acridinyl)heptane))、噻吨酮(例如2-氯噻吨酮(2-chlorothioxanthone)、2-甲基噻吨酮(2-methylthioxanthone)、2,4-二乙基噻吨酮(2,4-diethylthioxanthone)、2,4-二甲基噻吨酮(2,4-dimethylthioxanthone)、及2-异丙基噻吨酮(2-isopropylthioxanthone))、苯乙酮(例如1,1-二氯苯乙酮(1,1-dichloroacetophenone)、对叔丁基二氯-苯乙酮(p-t-butyldichloro-acetophenone)、2,2-二乙氧基苯乙酮(2,2-diethoxyacetophenone)、2,2-二甲氧基-2-苯基苯乙酮(2,2-dimethoxy-2-phenylacetophenone)、及2,2-二氯-4-苯氧基苯乙酮(2,2-dichloro-4-phenoxyacetophenone))、2,4,5-三芳基咪唑二聚物(例如2-(邻氯苯基)-4,5-二苯基咪唑二聚物(2-(o-chlorophenyl)-4,5-diphenylimidazole dimer)、2-(邻氯苯基)-4,5-二-(间甲氧基苯基咪唑二聚物(2-(o-chlorophenyl)-4,5-di-(m-methoxyphenyl imidazole dimer)、2-(邻氟苯基)-4,5-二苯基咪唑二聚物(2-(o-fluorophenyl)-4,5-diphenylimidazole dimer)、2-(邻甲氧基苯基)-4,5-二苯基咪唑二聚物(2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer)、2-(对甲氧基苯基)-4,5-二苯基咪唑二聚物(2-(p-methoxyphenyl)-4,5-diphenylimidazole dimer)、2,4-二(对甲氧基苯基)5-苯基咪唑二聚物(2,4-di(p-methoxyphenyl)--5-phenylimidazole dimer)、2-(2,4-二甲氧基苯基)-4,5-二苯基咪唑二聚物(2-(2,4-dimethoxyphenyl)-4,5-diphenylimidazole dimer)、及2-(对甲基巯苯基)-4,5-二苯基咪唑二聚物(2-(p-methylmercaptophenyl)-4,5-diphenylimidazole dimmer))或这些的合适的组合等。

  在光活性化合物为光碱产生剂的实施例中,光活性化合物可包含季铵二硫代氨基甲酸酯(quaternary ammonium dithiocarbamates)、α氨基酮(αaminoketones)、含肟-尿烷的分子(例如二苯并酰苯肟六亚甲基二尿烷(dibenzophenoneoxime hexamethylenediurethan))、四有机基硼酸铵盐(ammonium tetraorganylborate salts)、及N-(2-硝基苯甲氧基羰基)环胺(N-(2-nitrobenzyloxycarbonyl)cyclic amines)或这些的合适的组合等。然而,如所属领域中的普通技术人员将知,本文所列化学化合物仅旨在作为光活性化合物的说明性实例,而并不旨在将实施限制于仅具体阐述的那些光活性化合物。而是,可利用任何合适的光活性化合物,且所有此种光活性化合物均旨在包含于本发明实施例的范围内。

  此外,光刻胶517还可含有检测添加剂,所述检测添加剂有助于提高显影后检查(after development inspection,ADI)检测光刻胶517中存在缺陷的能力。在一些实施例中,检测添加剂可以是荧光添加剂,在显影后检查期间存在的条件下,所述荧光添加剂发荧光以有助于检查工艺检测先前未见的缺陷。举例来说,检测添加剂可以是具有不同激发及发射带(excitation and emission bands)的材料,此使得检测添加剂能够吸收第一波长的光且然后发射第二波长的光。

  在特定实施例中,检测添加剂可以是具有高度共轭结构的荧光添加剂。举例来说,在一些实施例中,检测添加剂可以是姜黄色素(curcumin)的酮式(keto form),其可具有如下结构:

  

  利用此种结构,姜黄色素将具有约为420nm的激发带,但也将具有约为540nm的发射带。由于此种差异,检查工艺还可拍摄将捕捉发射带下的波长(例如,540nm)的图像,所述图像与捕捉的其他数据一起可用来提供额外的图像。这些额外的图像可有助于提供额外的对比度,以识别以其他方式无法检测到的可能的缺陷。

  此外,尽管以上描述及示出了姜黄色素的酮式,但此旨在仅为一种可能的检测添加剂的说明性实例,而不旨在限于此精确实施例。相反,也可使用任何合适的检测添加剂,例如姜黄色素的烯醇式,或任何其他具有有助于在显影后检查期间增加对比度的合适的激发及发射带的化学品。举例来说,还可使用姜黄色素I、姜黄色素II(去甲氧基姜黄色素(demethoxycurcumin))或姜黄色素III(双去甲氧基姜黄色素(bis-demoethoxycurcumin)),所述姜黄色素中的每一者的结构分别如下所示:

  

  所有此种检测添加剂均旨在包含于实施例的范围内。

  光刻胶517的各个组分可被放置在光刻胶溶剂中,以有助于光刻胶517的混合及放置。为了有助于光刻胶517的混合及放置,至少部分地基于为光刻胶聚合物树脂及光活性化合物选择的材料来选择光刻胶溶剂。具体来说,选择光刻胶溶剂使得光刻胶聚合物树脂及光活性化合物可均匀地溶解在光刻胶溶剂中并分配。

  在实施例中,所述光刻胶溶剂可为有机溶剂,且可包含任何合适的溶剂,例如酮、醇、多元醇、醚、乙二醇醚、环醚、芳族烃、酯、丙酸酯、乳酸盐、乳酸酯、烷二醇单烷基醚(alkylene glycol monoalkyl ethers)、乳酸烷基酯(alkyl lactates)、烷氧基丙酸烷基酯(alkyl alkoxypropionates)、环内酯(cyclic lactones)、包含环的一元酮化合物、碳酸亚烷基酯(alkylene carbonates)、烷氧基乙酸烷基酯(alkyl alkoxyacetate)、丙酮酸烷基酯(alkyl pyruvates)、乳酸酯、乙二醇烷基醚乙酸酯(ethylene glycol alkyl etheracetates)、二乙二醇(diethylene glycols)、丙二醇烷基醚乙酸酯(propylene glycolalkyl ether acetates)、烷二醇烷基醚酯(alkylene glycol alkyl ether esters)、烷二醇单烷基酯(alkylene glycol monoalkyl esters)等。

  可用作光刻胶517的光刻胶溶剂的材料的具体实例包括丙酮、甲醇、乙醇、甲苯、二甲苯、4-羟基-4-甲基-2-戊酮(4-hydroxy-4-methyl-2-pentatone)、四氢呋喃(tetrahydrofuran)、甲基乙基酮(methyl ethyl ketone)、环己酮(cyclohexanone)、甲基异戊基酮(methyl isoamyl ketone)、2-庚酮、乙二醇、乙二醇单乙酸酯(ethylene glycolmonoacetate)、乙二醇二甲醚(ethylene glycol dimethyl ether)、乙二醇甲乙醚(ethylene glycol methylethyl ether)、乙二醇单乙醚(ethylene glycol monoethylether)、甲基溶纤剂乙酸酯(methyl celluslve acetate)、乙基溶纤剂乙酸酯(ethylcellosolve acetate)、二乙二醇、二乙二醇单乙酸酯、二乙二醇单甲醚、二乙二醇二乙醚、二乙二醇二甲醚、二乙二醇乙甲醚、二乙二醇单乙醚、二乙二醇单丁醚、2-羟基丙酸乙酯、2-羟基-2-甲基丙酸甲酯、2-羟基-2-甲基丙酸乙酯、乙氧基乙酸乙酯、羟基乙酸乙酯、2-羟基-2-甲基丁酸甲酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、乙酸乙酯、乙酸丁酯、乳酸甲酯及乳酸乙酯、丙二醇、丙二醇单乙酸酯、丙二醇单乙醚乙酸酯、丙二醇单甲醚乙酸酯、丙二醇单丙甲醚乙酸酯、丙二醇单丁醚乙酸酯、丙二醇单甲醚丙酸酯、丙二醇单乙醚丙酸酯、丙二醇甲基醚乙酸酯、丙二醇乙基醚乙酸酯、乙二醇单甲醚乙酸酯、乙二醇单乙醚乙酸酯、丙二醇单甲醚、丙二醇单乙醚、丙二醇单丙醚、丙二醇单丁醚、乙二醇单甲醚、乙二醇单乙醚、乳酸甲酯、乳酸乙酯、乳酸丙酯及乳酸丁酯、3-乙氧基丙酸乙酯、3-甲氧基丙酸甲酯、3-乙氧基丙酸甲酯及3-甲氧基丙酸乙酯、β-丙内酯(β-propiolactone)、β-丁内酯(β-butyrolactone)、γ-丁内酯(γ-butyrolactone)、α-甲基-γ-丁内酯(α-methyl-γ-butyrolactone)、β-甲基-γ-丁内酯(β-methyl-γ-butyrolactone)、γ-戊内酯(γ-valerolactone)、γ-己内酯(γ-caprolactone)、γ-辛内酯(γ-octanoic lactone)、α-羟基-γ-丁内酯(α-hydroxy-γ-butyrolactone)、2-丁酮、3-甲基丁酮、频哪酮(pinacolone)、2-戊酮、3-戊酮、4-甲基-2-戊酮、2-甲基-3-戊酮、4,4-二甲基-2-戊酮、2,4-二甲基-3-戊酮、2,2,4,4-四甲基-3-戊酮、2-己酮、3-己酮、5-甲基-3-己酮、2-庚酮、3-庚酮、4-庚酮、2-甲基-3-庚酮、5-甲基-3-庚酮、2,6-二甲基-4-庚酮、2-辛酮、3-辛酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、3-癸酮、4-癸酮、5-己-2-酮、3-戊-2-酮、环戊酮、2-甲基环戊酮、3-甲基环戊酮、2,2-二甲基环戊酮、2,4,4-三甲基环戊酮、环己酮、3-甲基环己酮、4-甲基环己酮、4-乙基环己酮、2,2-二甲基环己酮、2,6-二甲基环己酮、2,2,6-三甲基环己酮、环庚酮、2-甲基环庚酮、3-甲基环庚酮、丙烯碳酸酯、亚乙烯碳酸酯、乙烯碳酸酯、及丁烯碳酸酯、乙酸-2-甲氧基乙酯、乙酸-2-乙氧基乙酯、乙酸-2-(2-乙氧基乙氧)乙酯、乙酸-3-甲氧基-3-甲基丁酯、乙酸-1-甲氧基-2-丙酯、二丙二醇、单甲醚、单乙醚、单丙醚、单丁醚、单苯基醚、二丙二醇单乙酸酯、二恶烷、乳酸甲酯、乳酸乙酯、乙酸甲酯、乙酸乙酯、乙酸丁酯、丙酮酸甲酯、丙酮酸乙酯、丙酮酸丙酯、甲氧基丙酸甲酯、乙氧基丙酸乙酯、正甲基吡咯烷酮(n-methylpyrrolidone,NMP)、2-甲氧基乙基醚(二甘醇二甲醚)、乙二醇单甲醚、丙二醇单甲醚;乳酸乙酯或乳酸甲酯、丙酸甲酯、丙酸乙酯、及乙氧基丙酸乙酯、甲乙酮、环己酮、2-庚酮、二氧化碳、环戊酮、环己酮、3-乙氧基丙酸乙酯、乳酸乙酯(ethyllactate)、丙二醇甲醚乙酸酯(propylene glycol methyl ether acetate,PGMEA)、亚甲基溶纤剂(methylene cellosolve)、乙酸丁酯、及2-乙氧基乙醇、N-甲基甲酰胺、N,N-二甲基甲酰胺、N-甲基甲酰苯胺、N-甲基乙酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮(N-methylpyrrolidone)、二甲基亚砜(dimethylsulfoxide)、苯甲基乙醚、二己醚、丙酮基丙酮、异佛尔酮(isophorone)、己酸、辛酸、1-辛醇、1-壬醇、苯甲醇、乙酸苯甲酯、苯甲酸乙酯、草酸二乙酯、马来酸二乙酯(diethyl maleate)、γ-丁内酯(γ-butyrolactone)、乙烯碳酸酯、丙烯碳酸酯、苯基溶纤剂乙酸酯(phenyl cellosolve acetate)等。

  然而,如所属领域中的普通技术人员将知,以上所列及所阐述作为可用于光刻胶517的光刻胶溶剂组分的材料的实例的材料仅为说明性的,而并不旨在限制实施例。而是,可利用任何可溶解光刻胶聚合物树脂及光活性化合物的合适的材料来辅助混合及施加光刻胶517。所有此种材料均旨在包含于实施例的范围内。

  此外,虽然上述材料中的个别材料可用作光刻胶517的光刻胶溶剂,但在实施例中,可使用多于一种上述材料。举例来说,光刻胶溶剂可包含两种或更多种所述材料的组合混合物。所有此种组合均旨在包含于实施例的范围内。

  视情况,也可将光刻胶交联剂添加到光刻胶517中。光刻胶交联剂在暴露后与光刻胶517内的光刻胶聚合物树脂反应,从而辅助提高光刻胶517的交联密度,此有助于改善抗蚀剂图案及抗干蚀性(resistance to dry etching)。在实施例中,光刻胶交联剂可以是三聚氰胺系试剂(melamine based agent)、脲系试剂(urea based agent)、乙烯脲系试剂(ethylene urea based agent)、丙烯脲系试剂(propylene urea based agent)、甘脲系试剂(glycoluril based agent)、具有羟基、羟基烷基或它们的组合的脂肪族环状烃、脂肪族环状烃的含氧衍生物、甘脲化合物(glycoluril compounds)、醚化氨基树脂(etherifiedamino resins)或这些的组合等。

  可用作光刻胶交联剂的材料的具体实例包括三聚氰胺、乙酰胍胺(acetoguanamine)、苯并胍胺(benzoguanamine)、脲(urea)、乙烯脲(ethylene urea)或具有甲醛的甘脲、具有甲醛与低级醇的组合的甘脲、六甲氧基甲基三聚氰胺(hexamethoxymethylmelamine)、双甲氧基甲基脲(bismethoxymethylurea)、双甲氧基甲基双甲氧基乙烯脲(bismethoxymethylbismethoxyethylene urea)、四甲氧基甲基甘脲(tetramethoxymethylglycoluril)及四丁氧基甲基甘脲(tetrabutoxymethylglycoluril)、单-、二-、三-或四羟甲基化甘脲、单-、二-、三-和/或四甲氧基甲基化甘脲、单-、二-、三-和/或四乙氧基甲基化甘脲、单-、二-、三-和/或四-丙氧基甲基化甘脲、以及单-、二-、三-及/或四-丁氧基甲基化甘脲、2,3-二羟基-5-羟基甲基降冰片烷(2,3-dihydroxy-5-hydroxymethylnorbornane)、2-羟基-5,6-双(羟基甲基)降冰片烷(2-hydroy-5,6-bis(hydroxymethyl)norbornane)、环己烷二甲醇、3,4,8(或9)-三羟基三环癸烷、2-甲基-2-金刚烷醇(2-methyl-2-adamantanol)、1,4-二恶烷-2,3-二醇及1,3,5-三羟基环己烷(1,4-dioxane-2,3-diol and 1,3,5-trihydroxycyclohexane)、四甲氧基甲基甘脲、甲基丙基四甲氧基甲基甘脲及甲基苯基四甲氧基甲基甘脲、2,6-双(羟甲基)对甲酚、N-甲氧基甲基-或N-丁氧基甲基-三聚氰胺。此外,通过使甲醛或甲醛及低级醇与含氨基的化合物(例如,三聚氰胺、乙酰胍胺、苯并胍胺、脲、乙烯脲及甘脲)反应、并以羟甲基或低级烷氧基甲基取代氨基的氢原子而得到的化合物,其实例为六甲氧基甲基三聚氰胺(hexamethoxymethylmelamine)、双甲氧基甲基脲(bismethoxymethyl urea)、双甲氧基甲基双甲氧基乙烯脲(bismethoxymethylbismethoxyethylene urea)、四甲氧基甲基甘脲(tetramethoxymethyl glycoluril)及四丁氧基甲基甘脲(tetrabutoxymethylglycoluril)、3-氯-2-羟丙基甲基丙烯酸酯(3-chloro-2-hydroxypropyl methacrylate)与甲基丙烯酸的共聚物、3-氯-2-羟丙基甲基丙烯酸酯与甲基丙烯酸环己酯及甲基丙烯酸的共聚物、3-氯-2-羟丙基甲基丙烯酸酯与甲基丙烯酸苄酯及甲基丙烯酸的共聚物、双酚A-二(3-氯-2-羟丙基)醚(bisphenol A-di(3-chloro-2-hydroxypropyl)ether)、苯酚酚醛树脂的聚(3-氯-2-羟丙基)醚(poly(3-chloro-2-hydroxypro-pyl)ether of a phenolnovolak resin)、季戊四醇四(3-氯-2-羟丙基)醚(pentaerythritol tetra(3-chloro-2-hydroxypropyl)ether)、三羟甲基甲烷三(3-氯-2-羟丙基)醚苯酚(trimethylolmethanetri(3-chloro-2-hydroxypropyl)ether phenol)、双酚A-二(3-乙酰氧基-2-羟丙基)醚(bisphenol A-di(3-acetoxy-2-hydroxypropyl)ether)、苯酚酚醛树脂的聚(3-乙酰氧基-2-羟丙基)醚(poly(3-acetoxy-2-hydroxypropyl)ethe-r of a phenol novolak resin)、季戊四醇四(3-乙酰氧基-2-羟丙基)醚(pentaerythritol tetra(3-acetoxy-2-hydroxyprop-yl)ether)、季戊四醇聚(3-氯乙酰氧基-2-羟丙基)醚(pentaerythritolpoly(3-chloroacetoxy-2-hydroxypropyl)ether)、三羟甲基甲烷三(3-乙酰氧基-2-羟丙基)醚(trimethylolmethane tri(3-acetoxy-2-hydroxypropyl)ether)或这些的组合等。

  除了光刻胶聚合物树脂、光活性化合物、检测添加剂、光刻胶溶剂及光刻胶交联剂之外,光刻胶517还可包括许多辅助光刻胶517获得最高分辨率的其他添加剂。举例来说,光刻胶517还可包括表面活性剂、猝灭剂(quenchers)、稳定剂、增塑剂(plasticizers)、着色剂、粘合添加剂、表面平整剂或这些的组合等。可使用任何合适的添加剂。

  在实施例中,将光刻胶聚合物树脂、光活性化合物、检测添加剂以及任何所需添加剂或其他试剂加入到光刻胶溶剂中用于应用。一旦加入,便对所述混合物进行混合以实现整个光刻胶517的均匀组成,以确保不存在由光刻胶517的不均匀混合或非恒定组成引起的缺陷。一旦混合在一起,便可将光刻胶517在其使用之前进行存储或者立即使用。

  在实施例中,光活性化合物可以约0.5重量%的浓度存在于光刻胶中。此外,检测添加剂可以约0.01重量%与约0.03重量%之间(例如,约0.015重量%)的浓度存在于光刻胶中。然而,可利用任何合适的浓度。

  一旦准备就绪,便可通过首先将光刻胶517施加到晶种层518上来使用光刻胶517。光刻胶517可被施加到晶种层518使得光刻胶517涂布晶种层518的上部被暴露表面,且可使用例如旋转涂布工艺、浸涂法、气刀涂布法(air-knife coating method)、帘涂法(curtaincoating method)、丝-杆(wire-bar)涂布法、凹版涂布法、层合法、挤压涂布法或这些的组合等工艺来施加。在实施例中,光刻胶517可被施加使得其在晶种层518的表面上具有约10nm与约300nm之间(例如,约150nm)的厚度。

  一旦已施加光刻胶517,便执行光刻胶517的预烘烤以在曝光以完成光刻胶517的施加前固化及干燥光刻胶517。光刻胶517的固化及干燥会移除光刻胶溶剂组分,同时留下光刻胶聚合物树脂、光活性化合物、检测添加剂、光刻胶交联剂及其它选择的添加剂。在实施例中,可在适于蒸发掉光刻胶溶剂的温度下(例如,在约40℃与150℃之间)执行预烘烤,但精确的温度相依于为光刻胶517选择的材料。所述预烘烤被执行达足以固化及干燥光刻胶517的时间,例如约10秒与约5分钟之间(例如约90秒)的时间。

  图6示出了曝光光刻胶517以在光刻胶517内形成曝光区601及未曝光区603。在实施例中,曝光可通过在光刻胶517一经固化及干燥后便将光刻胶517放入成像装置600中进行曝光而开始。成像装置600可包括支撑板605、能量源607、位于支撑板605与能量源607之间的图案化掩模609、以及光学器件617。在实施例中,支撑板605是光刻胶517可以放置在上面或贴合在上面的表面,且所述表面在光刻胶517的曝光期间向载体衬底101提供支撑及控制。此外,支撑板605可沿着一个或多个轴移动,以及向载体衬底101及光刻胶517提供任何期望的加热或冷却,以防止温度梯度影响曝光工艺。

  在实施例中,能量源607将能量611(例如光)供应到光刻胶517以引发光活性化合物的反应,所述光活性化合物继而与聚合物树脂反应以使得光刻胶517的被能量611撞击的那些部分发生化学改变。在实施例中,能量611可为电磁辐射(例如g-射线(具有约436nm的波长)、i-射线(具有约365nm的波长))、紫外辐射、远紫外辐射、极紫外辐射、x-射线、电子束等。能量源607可为电磁辐射源,且可为KrF准分子激光(具有248nm的波长)、ArF准分子激光(具有193nm的波长)、F2准分子激光(具有157nm的波长)等,但也可利用任何其他合适的能量611源,例如汞蒸气灯、氙灯、碳弧灯等。

  图案化掩模609位于能量源607与光刻胶517之间以在能量611实际撞击在光刻胶517上之前阻挡能量611的一些部分以形成图案化能量615。在实施例中,图案化掩模609可包括一系列层(例如,衬底、吸收层、抗反射涂层、屏蔽层等)以反射、吸收或以其他方式阻挡能量611的某些部分到达光刻胶517的不期望被照射的那些部分。可通过以所期望的照射形状形成穿过图案化掩模609的开口而在图案化掩模609中形成所期望的图案。

  光学器件(在图6中由标记为617的梯形表示)可用于聚焦、扩展、反射或以其他方式控制离开能量源607、由图案化掩模609图案化并指向光刻胶517的能量611。在实施例中,光学器件617包括一个或多个透镜、反射镜、滤波器、或其组合等,以控制沿着其路径的能量611。此外,虽然在图6中将光学器件617示出为位于图案化掩模609与光刻胶517之间,但光学器件617的元件(例如,个别透镜、反射镜等)也可位于能量源607(产生能量611之处)与光刻胶517之间的任何位置处。

  在实施例中,光刻胶517被放置在支撑板605上。一旦图案已对齐,能量源607便产生所需的能量611(例如,光),所述能量611穿过图案化掩模609及光学器件617而进入光刻胶517。撞击在光刻胶517的一些部分上的图案化能量615会引发光刻胶517内的光活性化合物的反应。光活性化合物吸收图案化能量615后的化学反应产物(例如,酸/碱/自由基)接着与聚合物树脂反应,从而使光刻胶517在通过图案化掩模609被照射的那些部分中发生化学改变。然而,检测添加剂不参与在光刻胶517的图案化期间发生的其他反应。

  在光刻胶517已被曝光之后,便可使用曝光后烘烤(post-exposure baking)来辅助在曝光期间因图案化能量615撞击在光活性化合物上而产生的酸/碱/自由基的产生、分散及反应。此种辅助有助于产生或加强在光刻胶517内的曝光区601及未曝光区603之间产生化学差异的化学反应。这些化学差异也导致在曝光区601与未曝光区603之间的溶解度差异。在实施例中,此曝光后烘烤可在约40℃与约200℃之间的温度下发生并持续约10秒与约10分钟之间的时间。然而,可利用任何合适的温度及时间。

  图7示出在曝光光刻胶517后使用显影剂701对光刻胶517进行显影。在光刻胶517已被曝光且已发生曝光后烘烤之后,可使用正性(positive tone)显影剂对光刻胶517进行显影。在实施例中,正性显影剂可以是碱性水溶液,其用于移除光刻胶517的暴露于图案化能量615且其溶解度通过化学反应被修改及改变的那些部分。此类碱性水溶液可包括四甲基氢氧化铵(tetra methyl ammonium hydroxide,TMAH)、四丁基氢氧化铵、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、硅酸钠、偏硅酸钠、氨水、单甲胺、二甲胺、三甲胺、单乙胺、二乙胺、三乙胺、单异丙胺、二异丙胺、三异丙胺、单丁胺、二丁胺、单乙醇胺、二乙醇胺、三乙醇胺、二甲基氨基乙醇、二乙氨基乙醇、氨、苛性钠(caustic soda)、苛性钾(caustic potash)、偏硅酸钠(sodium metasilicate)、偏硅酸钾(potassium metasilicate)、碳酸钠、氢氧化四乙铵(tetraethylammonium hydroxide)或它们的组合等。

  图7示出使用例如旋涂工艺将显影剂701施加到光刻胶517。在此工艺中,从光刻胶517的上方将显影剂701施加到光刻胶517。在实施例中,可在以约100rpm与约3500rpm之间(例如,约1500rpm)的速度旋转半导体装置100的同时以约10ml/min与约2000ml/min之间(例如,约1000ml/min)的流速供应显影剂701。在实施例中,显影剂701可处于约10℃与约80℃之间(例如约50℃)的温度下,且显影可持续约1分钟与约60分钟之间,例如约30分钟。

  然而,尽管本文所述的旋涂法为一种适合于在曝光之后对光刻胶517进行显影的方法,但其旨在为说明性的,而并不旨在限制实施例。相反,可使用用于显影的任何合适的方法,包括浸渍工艺、液浸工艺(puddle process)、喷涂工艺或这些的组合等。所有此种显影工艺均旨在包含于实施例的范围内。

  图8示出在光刻胶517已被显影并且显影剂701已被移除之后,可执行显影后检查工艺,以判断是否存在在光刻胶517的放置、图案化及显影期间已发生的任何缺陷。在实施例中,可将光刻胶517放置在检查室801内,所述检查室801还包括贴合到光学平台807的同调光源(coherent light source)803及照相机805。在实施例中,同调光源803可以是既可从光刻胶517反射又可由照相机805检测到的一个或多个能量源。

  在特定的实例中,同调光源803可以是发射以下波长的同调光束811的激光器,所述波长除了适于缺陷检查之外,还激发检测添加剂。因此,当同调光束811撞击在光刻胶517及位于光刻胶517内的检测添加剂时(下文进一步描述),检测添加剂(例如,姜黄色素)将吸收在激发波长下的一部分同调光束811,并将被激发。当检测添加剂随后返回到正常的非激发态时,检测添加剂将基于检测添加剂的发射带(例如,对于姜黄色素来说为540nm)在不同波长下发射光子。此种激发及随后的发射将导致检测添加剂发荧光,从而将荧光的波长加到从光刻胶517反射的同调光束811的剩余部分,并增加可实现的对比度的量。

  在检测添加剂为姜黄色素的特定实施例中,同调光束811可以是具有将激发姜黄色素的至少一个波长(例如,在420nm下的至少一个波长)的激光光束。当同调光束811冲击姜黄色素时,姜黄色素将吸收420nm波长下的激光光束并被激发,其中至少有一个电子吸收能量并跳入更高的电子壳(electron shell)中。因此,一旦姜黄色素返回到其基态(normalstate)时,姜黄色素便基于检测添加剂的发射带(对姜黄色素来说为540nm)发出不同波长的光。

  照相机805用于在同调光束811从光刻胶517的表面反射出时捕捉同调光束811,并且还用于捕捉从检测添加剂发荧光的光,从而捕捉被检查的光刻胶517的表面的图像。在实施例中,照相机805可以是一个或多个电荷耦合装置,其能够检测从光刻胶517反射的能量及从检测添加剂发荧光的能量。此外,照相机805还可包括例如透镜或其他光学器件等结构,这些结构有助于将入射的反射激光分成不同的频率,并将不同的频率引导至不同的电荷耦合装置。这种划分允许同时采集多幅图像。

  同调光源803及照相机805两者均可贴合到光学平台807。在实施例中,光学平台807安装在检查室801内,使得光学平台807(并且因此同调光源803及照相机805)可相对于光刻胶517移动。具体来说,光学平台807可沿任何可能需要的方向(上、下、左、右、进入页面或离开页面)移动,以完成对光刻胶517的全扫描。

  此外,虽然已将许多结构描述为检查室801的一部分,但特别描述的结构并不旨在限制于所述实施例。相反,也可包括任何数量的附加结构(例如,漫射光源、准直器、偏振器、补偿器(compensators)、聚焦透镜或它们的组合等)作为检查室801的一部分。这些及所有其他合适的结构均旨在包含于实施例的范围内。

  在操作中,将载体衬底101以及光刻胶517(为了清楚起见,在图8中仅示出了光刻胶517)放置在检查室801内,并且将光学平台807定位到起始位置。一旦一切就位,同调光源803便产生同调光束811并朝向光刻胶517引导同调光束811。同调光束811从光刻胶517反射出,其中光刻胶517的形貌修改反射并且被捕捉光刻胶517的表面的图像的照相机805捕捉。

  然而,通过使用检测添加剂,同调光束不仅从光刻胶517的表面反射出。除了反射之外,同调光束还将激发光刻胶517内存在的检测添加剂。当检测添加剂返回到其原始的非激发态时,检测添加剂会发光并发出不同波长的荧光。这种波长的变化也被照相机805获得,并且可用来帮助提高照相机805记录的图像的对比度。

  检查工艺通过以下操作从初始位置继续:通过在光学平台807及/或光刻胶517移动时扫描光刻胶517,或者通过停止照明、移动光学平台807及/或光刻胶517、然后照射光刻胶517的新区段来移动光学平台807、光刻胶517或相对于彼此移动所述两者的组合。此种扫描或步进及扫描(step-and-scan)方法可继续进行,直到期望被检查的光刻胶517的表面的所有图像都已被照相机805捕捉到。

  一旦照相机805已捕捉到了所需的图像(或者当照相机805捕捉所需的图像时),照相机805便将所捕捉的光刻胶517的表面的图像发送到处理计算机809。处理计算机809获取各种捕捉的图像并识别光刻胶517的表面上的结构。在一个实施例中,处理计算机809可通过针对给定波长、入射角及结构取向计算反射同调光束811的Rp/Rs比以及来自检测添加剂的荧光能量来分析来自照相机的图像,以确定所需的测量值。这种测量可包括光刻胶517的表面的结构之间的间距、结构的厚度、临界尺寸、结构的侧壁角度或这些的组合等。

  在一个非常特定的实施例中,检查室801可利用来自鲁道夫技术(RudolphTechnologies)的法尔弗莱(Firefly)TM系列平台。在本实施例中,激光可用于在光刻胶517上扫描以及激发检测添加剂(例如,姜黄色素),其中反射激光及来自检测添加剂的荧光能量随后被照相机捕捉及分析。然而,虽然可使用FirefyTM系列平台,但此仅旨在为说明性的,并非旨在限制实施例,因为可使用可与检测添加剂一起使用的任何合适的平台。

  通过利用检测添加剂及检查工艺,可在显影后检查期间从对光刻胶517的表面的成像获得不同波长的附加能量。在存在附加能量的情况下,可在显影后检查工艺期间获得对比度增加的图像。此种图像对比度的增加(例如,增加约100%与约300%之间)有助于识别在没有添加检测添加剂的情况下无法观察到的缺陷。

  一旦显影后检查工艺已被完成且如果显影后检查工艺未发现任何缺陷或发现可能为可接受的若干缺陷,便可将所述结构送交进一步处理(下文将进一步讨论)。然而,如果在光刻胶517内观察到不可接受数量的缺陷,那么可通过诸如灰化等工艺来移除光刻胶517,并且光刻胶517的放置、曝光、显影及检查可重复进行以确保在随后的处理期间不存在重大缺陷。

  图9示出一旦光刻胶517已被形成、图案化及通过检查,便可通过例如镀覆(其不受检测添加剂的存在的影响)等沉积工艺在晶种层518(为清楚起见,从图9移除晶种层518)上形成例如铜等导电材料以形成第一重布线层501。所述导电材料可被形成为具有介于约1μm与约10μm之间(例如约5μm)的厚度。然而,尽管所述材料及方法适合形成导电材料,但这些材料仅为示例性的。可使用任何其他合适的材料(例如AlCu或Au)及任何其他合适的形成工艺(例如化学气相沉积或物理气相沉积)来形成第一重布线层501。

  一旦导电材料已被形成,便可通过合适的移除工艺(例如灰化)来移除光刻胶517。另外,在移除光刻胶517之后,可通过例如以导电材料作为掩模的合适的蚀刻工艺来移除晶种层518的被光刻胶517覆盖的那些部分。

  此外,如果需要,那么可执行剥离器后检查(after stripper inspection)以确保在执行后续处理之前已充分移除所有光刻胶517。在实施例中,可以与显影后检查类似的方式执行剥离器后检查,其中将所述结构放置在检查室801中,并且能量(例如,激光)从表面反射出且由照相机805捕捉图像。在此类实施例中,检测添加剂的存在将再次提高对比度并帮助识别先前未被检测到的缺陷。一旦剥离器后检查证实光刻胶517已被完全移除,便可继续进行制造工艺。

  图9还示出在第一重布线层501上形成第三钝化层503,以便为第一重布线层501及其他下伏结构提供保护及隔离。在实施例中,第三钝化层503可为聚苯并恶唑(PBO),但也可利用例如聚酰亚胺或聚酰亚胺衍生物等任意合适的材料。第三钝化层503可使用例如旋转涂布工艺而被形成至约5μm与约25μm之间(例如约7μm)的厚度,但可使用任何合适的方法及厚度。

  在已形成第三钝化层503之后,可通过移除第三钝化层503的一些部分以暴露出下伏第一重布线层501的至少一部分来形成贯穿第三钝化层503的第一开口504(为清楚起见,在图9中仅示出了其中的一者)。第一开口504使得能够实现第一重布线层501与第二重布线层505之间的接触(下文进一步描述)。可使用合适的光刻掩模(包括,例如包括检测添加剂及普斯特(poste)显影检查工艺)及蚀刻工艺来形成第一开口504,但可使用任何合适的工艺来暴露出第一重布线层501的一些部分。

  第二重布线层505可被形成为提供附加的路由及连接性并且与第一重布线层501电连接。在实施例中,可类似于第一重布线层501来形成第二重布线层505。举例来说,可形成晶种层,可将具有检测添加剂的光刻胶放置及图案化在晶种层的顶部,可检查光刻胶,并且可将导电材料镀覆到贯穿光刻胶的图案化开口中。一旦形成,便可移除光刻胶,可蚀刻下伏晶种层,可由第四钝化层507(其可与第三钝化层503类似)覆盖第二重布线层505,且可将第四钝化层507图案化以形成第二开口506(为清楚起见,在图9中仅示出了其中的一者)并暴露出第二重布线层505的下伏导电部分。

  第三重布线层509可被形成为提供额外的路由以及与第二重布线层505的电连接。在实施例中,可使用与第一重布线层501类似的材料及工艺来形成第三重布线层509。举例来说,可形成晶种层,可以第三重布线层509的所需图案将具有检测添加剂的光刻胶放置及图案化在晶种层的顶部,可检查光刻胶,将导电材料镀覆到光刻胶的图案化开口中,移除光刻胶并蚀刻晶种层。

  然而,除了简单地重新路由电连接(类似于第二重布线层505)之外,第三重布线层509还可包括着陆垫(landing pad),所述着陆垫将用于形成与例如上覆第三外部连接部901的电连接(下文进一步描述)。可使着陆垫成形以便与第三外部连接部901进行合适的物理及电连接。

  一旦第三重布线层509已被形成,便可由第五钝化层511覆盖第三重布线层509。第五钝化层511类似于第三钝化层503可由例如PBO等聚合物形成,或可由与第三钝化层503类似的材料(例如,聚酰亚胺或聚酰亚胺衍生物)形成。第五钝化层511可被形成为具有约2μm与约15μm之间(例如约5μm)的厚度。

  一旦在第三重布线层509之上设置第五钝化层511,便可使第五钝化层511与第三重布线层509平坦化。在实施例中,可使用例如化学机械抛光工艺来执行平坦化,由此与旋转压板一起使用蚀刻剂及磨料,以便化学及机械地移除第五钝化层511的一些部分,直到第五钝化层511与第三重布线层509共面。然而,可使用任何合适的平坦化工艺,例如一系列一种或多种蚀刻或机械研磨工艺。

  在第五钝化层511已被形成并平坦化后,可将第六钝化层513放置在第五钝化层511及第三重布线层509之上并图案化。在实施例中,第六钝化层513可以是与第五钝化层511类似的材料(例如,PBO),并且第六钝化层513可被图案化以暴露出第三重布线层509的下伏部分。在实施例中,可使用光刻掩蔽及蚀刻工艺来图案化第六钝化层513,由此在蚀刻工艺期间沉积并图案化光刻胶并随后将光刻胶用作掩模,以移除第六钝化层513的一些部分并暴露出第三重布线层509的一些部分。然而,可利用任何合适的用于图案化第六钝化层513的方法。

  在第六钝化层513已被形成并图案化之后,在第六钝化层513上方沉积第二晶种层515。在实施例中,第二晶种层515为导电材料的薄层,其有助于在后续处理步骤期间形成更厚的层。第二晶种层515可包含约厚的钛层、以及约厚的铜层。可依据所期望的材料而使用例如溅射工艺、蒸镀工艺或等离子体增强型化学气相沉积(PECVD)工艺等工艺来形成第二晶种层515。第二晶种层515可被形成为具有约0.3μm与约1μm之间(例如约0.5μm)的厚度。

  一旦第二晶种层515已被沉积,便可将光刻胶置于第二晶种层515上方并图案化以准备形成第三外部连接部901。在实施例中,可放置并图案化被添加检测添加剂的光刻胶,且然后可使用显影后检查工艺以及检测添加剂对光刻胶进行检查。

  一旦光刻胶已被图案化,便可在光刻胶的开口内形成第三外部连接部901。在实施例中,第三外部连接部901可为例如铜柱且可包含一种或多种导电材料(例如铜、钨、其他导电材料等),且可例如通过电镀、无电镀覆等形成。在实施例中,使用电镀工艺,在所述电镀工艺中,将第二晶种层515及光刻胶浸没或浸渍在电镀溶液(例如,含硫酸铜(CuSO4)的溶液)中。第二晶种层515的表面电连接到外部直流(DC)电源的负极侧(negative side),以使得第二晶种层515在电镀工艺中用作阴极。实心导电阳极(例如铜阳极)也浸渍在所述溶液中并将所述实心导电阳极贴合到电源的正极侧。来自阳极的原子溶解于溶液中,阴极(例如,第二晶种层515)从所述溶液获取所溶解的原子,从而镀覆在第二晶种层515于光刻胶的开口内的被暴露之导电区域上。

  一旦已利用光刻胶及第二晶种层515形成了第三外部连接部901,便可利用合适的移除工艺移除光刻胶。在实施例中,可使用等离子体灰化工艺来移除光刻胶,由此可提高光刻胶的温度直到光刻胶经历热分解且可被移除。然而,可利用任何其他合适的工艺,例如湿式剥离。移除光刻胶可暴露出第二晶种层515的下伏部分。

  图9示出一旦第二晶种层515已被暴露出,便可执行移除第二晶种层515的被暴露出的部分。在实施例中,可通过例如湿式蚀刻工艺或干式蚀刻工艺来移除第二晶种层515的被暴露出的部分(例如,未被第三外部连接部901覆盖的那些部分)。举例来说,在干式蚀刻工艺中,可利用第三外部连接部901作为掩模来朝向第二晶种层515引导反应物,从而将第二晶种层515形成为具有垂直于第六钝化层513的表面的直侧壁。在另一实施例中,可喷射蚀刻剂或以其他方式使蚀刻剂与第二晶种层515接触,以移除第二晶种层515的被暴露出的部分。

  图9示出在第三外部连接部901上形成第四外部连接部1101。在实施例中,第四外部连接部1101可为接触凸块(例如微凸块或受控塌缩芯片连接(controlled collapsechip connection,C4)凸块),且可包含例如锡等材料或例如银或铜等其他合适的材料。在第四外部连接部1101是接触凸块的实施例中,第四外部连接部1101可包含例如锡等材料或例如银、无铅锡或铜等其他合适的材料。在第四外部连接部1101是锡焊料凸块的实施例中,可通过首先经由此类常用方法(例如蒸镀、电镀、印刷、焊料转移、球放置等)将锡层形成至例如约100μm的厚度来形成第四外部连接部1101。一旦已在结构上形成了一层锡,便可执行回焊以使材料成形为所需的凸块形状,所述凸块形状的临界尺寸可在约60μm与约100μm之间,并且可形成为圆形形状或椭圆形形状。

  图10示出载体衬底101从第一半导体装置201及第二半导体装置301剥离。在实施例中,可将第四外部连接部1101且因此将包括第一半导体装置201及第二半导体装置301的结构贴合到环结构1201。环结构1201可为金属环,用以在所述剥离工艺期间及在所述剥离工艺之后为结构提供支撑及稳定性。在实施例中,使用例如紫外胶带1203将第四外部连接部1101、第一半导体装置201及第二半导体装置301贴合到环结构,但可使用任何其他合适的粘合剂或贴合方式。

  一旦第四外部连接部1101且因此包括第一半导体装置201及第二半导体装置301的结构贴合到环结构1201之后,便可使用例如用以改变粘合剂层103的粘合性质的热工艺将载体衬底101从包括第一半导体装置201及第二半导体装置301的结构剥离。在特定实施例中,利用例如紫外(UV)激光、二氧化碳(CO2)激光、或红外(infrared,IR)激光等能量源来辐照及加热粘合剂层103,直到粘合剂层103丧失其至少某些的粘合性质中。一旦执行之后,便可使载体衬底101及粘合剂层103从包括第四外部连接部1101、第一半导体装置201及第二半导体装置301的结构实体分离且自所述结构移除。

  图10另外示出将聚合物层105图案化以暴露出通孔111(以及相关联的第一晶种层107)。在实施例中,可使用例如激光钻孔方法来图案化聚合物层105。在此种方法中,首先在聚合物层105上方沉积保护层,例如光-热转换(light-to-heat conversion,LTHC)层或保护层(例如是hogomax层,在图10中未单独示出)。一旦得到保护之后,便将激光射到聚合物层105的期望被移除的那些部分以暴露出下伏通孔111。在激光钻孔工艺期间,钻孔能量可处于0.1mJ到约30mJ的范围内,且钻孔角度相对于聚合物层105的法线为约0°(垂直于聚合物层105)到约85°。在实施例中,所述图案化可被形成为将第四开口1205在通孔111上方形成为具有约100μm与约300μm之间(例如约200μm)的宽度。

  在另一实施例中,可通过以下方式将聚合物层105图案化:首先对聚合物层105施加光刻胶(在图10中未各别示出),然后将光刻胶暴露至图案化能量源(例如,图案化光源)以引发化学反应,从而引发光刻胶的被暴露到图案化光源的那些部分的物理变化。然后对被暴露光刻胶施加显影剂,以利用物理变化并依据所期望的图案而选择性地移除光刻胶的被暴露部分或光刻胶的未被暴露部分,且利用例如干式蚀刻工艺来移除聚合物层105的下伏被暴露部分。然而,可利用任何其他合适的用于图案化聚合物层105的方法。

  图11示出将背面球垫1301放置在聚合物层105的开口内,以保护现在被暴露出的通孔111。在实施例中,背面球垫1301可包括例如焊料膏(solder on paste)或氧化保焊剂(oxygen solder protection,OSP)等导电材料,但也可利用任意合适的材料。在实施例中,可使用模版(stencil)来施加背面球垫1301,但也可使用任何合适的施加方法,且然后对背面球垫1301进行回焊以形成凸块形状。

  图11还示出背面球垫1301上的背面保护层1303的放置及图案化,背面保护层1303有效地密封背面球垫1301与通孔111之间的接合处以防止受潮。在实施例中,背面保护层1303可为例如聚苯并恶唑、阻焊剂(SR)、层合化合物(lamination Compound,LC)胶带、味之素构成膜(ABF)、非导电膏(non-conductive paste,NCP)、非导电膜(non-conductivefilm,NCF)、图案化底部填充物(patterned underfill,PUF)、翘曲改善粘合剂(warpageimprovement adhesive,WIA)、液体模制化合物V9、或其组合等保护材料。然而,也可利用任意合适的材料。可利用例如丝网印刷(screen printing)、层合、旋转涂布等工艺来将背面保护层1303涂敷到约1μm与约200μm之间的厚度。

  图11还示出一旦已放置了背面保护层1303,便可将背面保护层1303图案化以暴露出背面球垫1301。在实施例中,可以使用例如激光钻孔方法来图案化背面保护层1303,通过所述激光钻孔方法朝向背面保护层1303的期望被移除的那些部分引导激光,以暴露出背面球垫1301。在激光钻孔工艺期间,钻孔能量可处于0.1mJ到约30mJ的范围内,且钻孔角度相对于背面保护层1303的法线为约0°(垂直于背面保护层1303)到约85°。在实施例中,所述暴露可形成直径介于约30μm与约300μm之间(例如,约150μm)的开口。

  在另一实施例中,可通过以下方式将背面保护层1303图案化:首先对背面保护层1303施加光刻胶(在图11中未各别示出),然后将光刻胶暴露至图案化能量源(例如,图案化光源)以引发化学反应,从而引发光刻胶的被暴露至图案化光源的那些部分的物理变化。然后对被暴露光刻胶施加显影剂,以利用物理变化并依据所期望的图案而选择性地移除光刻胶的被暴露部分或光刻胶的未被暴露部分,且利用例如干式蚀刻工艺来移除背面保护层1303的下伏被暴露部分。然而,可利用任何其他合适的用于图案化背面保护层1303的方法。

  图11还示出将背面球垫1301接合到第一封装1300。在实施例中,第一封装1300可包括第三衬底1305、第三半导体装置1307、第四半导体装置1309(接合到第三半导体装置1307)、第三接触垫1311、第二包封体1313及第五外部连接部1315。在实施例中,第三衬底1305可为例如包括用以将第三半导体装置1307及第四半导体装置1309连接到背面球垫1301的内部互连件(例如,衬底穿孔1317)的封装衬底。

  在另一实施例中,第三衬底1305可为用作中间衬底的中介层(interposer)以将第三半导体装置1307及第四半导体装置1309连接到背面球垫1301。在此实施例中,第三衬底1305可为例如经掺杂或未经掺杂的硅衬底、或绝缘体上覆硅(SOI)衬底的有源层。然而,第三衬底1305也可为玻璃衬底、陶瓷衬底、聚合物衬底、或可提供合适的保护和/或互连功能性的任何其他衬底。第三衬底1305可由这些及任何其他合适的材料构成。

  第三半导体装置1307可为被设计用于预期用途(例如作为逻辑管芯、中央处理器(central processing unit,CPU)管芯、存储器管芯(例如,动态随机存取存储器(DRAM)管芯)或这些的组合等)的半导体装置。在实施例中,根据对于特定功能性来说所需要,第三半导体装置1307包括集成电路装置,例如晶体管、电容器、电感器、电阻器、金属化层(图中未示出)等。在实施例中,第三半导体装置1307被设计及制造成与第一半导体装置201相结合地操作或与第一半导体装置201同时操作。

  第四半导体装置1309可类似于第三半导体装置1307。举例来说,第四半导体装置1309可为被设计用于预期用途(例如,动态随机存取存储器管芯)且包括用于所期望功能性的集成电路装置的半导体装置。在实施例中,第四半导体装置1309被设计成与第一半导体装置201和/或第三半导体装置1307相结合地操作或与第一半导体装置201和/或第三半导体装置1307同时操作。

  第四半导体装置1309可接合到第三半导体装置1307。在实施例中,第四半导体装置1309仅与第三半导体装置1307实体接合,例如通过使用粘合剂进行结合。在此实施例中,第四半导体装置1309及第三半导体装置1307可使用例如打线结合(wire bond)1319而电连接到第三衬底1305,但可利用任何合适的电接合。

  在另一实施例中,第四半导体装置1309可实体及电接合到第三半导体装置1307。在此实施例中,第四半导体装置1309可包括外部连接部(在图11中未单独示出),所述连接部与第三半导体装置1307上的外部连接部(在图11中也未单独示出)连接以将第四半导体装置1309与第三半导体装置1307互连。

  第三接触垫1311可形成于第三衬底1305上以形成第三半导体装置1307与例如第五外部连接部1315之间的电连接。在实施例中,第三接触垫1311可形成于第三衬底1305上方且与第三衬底1305内的电路径(例如衬底穿孔1317)电接触。第三接触垫1311可包含铝,但可使用其他材料,例如铜。可使用沉积工艺(例如溅射)来形成第三接触垫1311,以形成材料层(图中未示出),且然后可通过合适的工艺(例如光刻掩蔽及蚀刻)来移除所述材料层的部分以形成第三接触垫1311。然而,可利用任何其他合适的工艺来形成第三接触垫1311。第三接触垫1311可被形成为具有约0.5μm与约4μm之间(例如约1.45μm)的厚度。

  可使用第二包封体1313来包封及保护第三半导体装置1307、第四半导体装置1309及第三衬底1305。在实施例中,第二包封体1313可为模制化合物且可使用模制装置(在图11中未示出)来放置。举例来说,可将第三衬底1305、第三半导体装置1307及第四半导体装置1309放置在模制装置的空腔内,且可将所述空腔气密密封。可在所述空腔被气密密封之前将第二包封体1313放置在空腔内,或可通过注射口而将第二包封体1313注射到空腔中。在实施例中,第二包封体1313可为模制化合物树脂,例如聚酰亚胺、PPS、PEEK、PES、耐热晶体树脂或这些的组合等。

  一旦已将第二包封体1313放置到空腔中以使得第二包封体1313包封第三衬底1305、第三半导体装置1307、以及第四半导体装置1309周围的区之后,便可将第二包封体1313固化以硬化第二包封体1313来实现最佳保护。尽管确切固化工艺至少部分地相依于为第二包封体1313所选择的特定材料,但在选择模制化合物作为第二包封体1313的实施例中,可通过例如将第二包封体1313加热到约100℃与约130℃之间(例如约125℃)达约60秒到约3000秒(例如约600秒)的时间的工艺来进行固化。另外,可在第二包封体1313内包含引发剂和/或催化剂以更好地控制所述固化工艺。

  然而,如所属领域中的普通技术人员将知,上述固化工艺仅为示例性工艺,而并不旨在限制当前实施例。可使用其他固化工艺,例如辐照或甚至使第二包封体1313在周围环境温度下硬化。可使用任何合适的固化工艺,且所有此种工艺均旨在包含于本文所述实施例的范围内。

  在实施例中,可形成第五外部连接部1315以提供第三衬底1305与例如背面球垫1301之间的外部连接。第五外部连接部1315可为接触凸块(例如微凸块或受控塌缩芯片连接(C4)凸块),且可包含例如锡等材料或例如银或铜等其他合适的材料。在第五外部连接部1315为锡焊料凸块的实施例中,可通过首先经由任何合适的方法(例如蒸镀、电镀、印刷、焊料转移、球放置等)将锡层形成到例如约100μm的厚度来形成第五外部连接部1315。一旦锡层已形成于所述结构上,便执行回焊以将所述材料成型为期望的凸块形状。

  一旦已形成第五外部连接部1315,便使第五外部连接部1315与背面球垫1301对齐并将第五外部连接部1315放置成与背面球垫1301实体接触,且执行接合。举例来说,在第五外部连接部1315为焊料凸块的实施例中,接合工艺可包括回焊工艺,由此使第五外部连接部1315的温度升高到使第五外部连接部1315将液化及流动的程度,从而一旦第五外部连接部1315重新凝固之后便将第一封装1300接合到背面球垫1301。

  图11另外示出将第二封装1321接合到背面球垫1301。在实施例中,第二封装1321可类似于第一封装1300,且可利用类似的工艺接合到背面球垫1301。然而,第二封装1321也可不同于第一封装1300。

  图12示出将第四外部连接部1101从环结构1201剥离以及将所述结构单体化以形成第一集成扇出式堆叠封装(integrated fan out package-on-package,InFO-POP)结构1400。在实施例中,可通过首先使用例如第二紫外胶带将第一封装1300及第二封装1321接合到第二环结构而使第四外部连接部1101从环结构1201剥离。一旦接合之后,便可使用紫外辐射来辐照紫外胶带1203,且一旦紫外胶带1203已丧失其粘合性,便可使第四外部连接部1101从环结构1201实体分离。

  一旦剥离,便执行所述结构的单体化以形成第一集成扇出式堆叠封装结构1400。在实施例中,可通过使用锯片(图中未示出)切穿包封体401及各通孔111之间的聚合物层105来执行单体化,从而使各区段彼此分离以形成具有第一半导体装置201的第一集成扇出式堆叠封装结构1400。然而,如所属领域中的普通技术人员将知,利用锯片将第一集成扇出式堆叠封装结构1400单体化仅为一个说明性实施例,而并不旨在进行限制。也可利用将第一集成扇出式堆叠封装结构1400单体化的其他方法,例如利用一次或多次蚀刻来分离第一集成扇出式堆叠封装结构1400。可利用这些方法及任何其他合适的方法来将第一集成扇出式堆叠封装结构1400单体化。

  通过利用光刻胶内的检测添加剂(例如,姜黄色素)及检查工艺,可在显影检查期间或显影检查之后从对光刻胶517的表面的成像获得不同波长的附加能量。在存在附加能量的情况下,可在显影后检查工艺期间获得对比度增加的图像。此种图像对比度的增加(例如,增加约100%与约300%之间)有助于识别在没有添加检测添加剂的情况下无法观察到的缺陷。因此,在缺陷可对后续处理步骤产生影响之前可识别出并处理更多的缺陷,从而使效率及良率整体增加。

  在实施例中,一种制造半导体装置的方法,所述方法包括:在半导体衬底之上施加光刻胶,所述光刻胶包含检测添加剂;对所述光刻胶进行曝光及显影;以及在对所述光刻胶进行显影之后检查所述光刻胶,其中所述检测添加剂在所述检查所述光刻胶期间发荧光。在实施例中,所述检测添加剂是姜黄色素。在实施例中,所述检测添加剂在约540nm的波长下发荧光。在实施例中,所述检查所述光刻胶包括将激光引导至所述光刻胶处。在实施例中,所述检测添加剂在所述光刻胶内的浓度在约0.01重量%与约0.03重量%之间。在实施例中,所述检测添加剂在所述光刻胶内的浓度为约0.015重量%。在实施例中,所述施加所述光刻胶包括将所述光刻胶施加在绝缘体穿孔及包封体之上。

  在另一实施例中,一种制造半导体装置的方法包括:将光刻胶聚合物树脂放置在光刻胶溶剂中;将光酸产生剂放置在所述光刻胶溶剂中;将姜黄色素放置在所述光刻胶溶剂中;以及混合所述光刻胶聚合物树脂、所述光酸产生剂、所述姜黄色素以及所述光刻胶溶剂以形成光刻胶。在实施例中,所述方法还包括将所述光刻胶分配到半导体衬底上。在实施例中,所述方法还包括:对所述光刻胶进行显影;以及在对所述光刻胶进行显影之后检查所述光刻胶。在实施例中,在所述检查所述光刻胶期间,所述姜黄色素将发荧光。在实施例中,包封体环绕所述半导体衬底。在实施例中,穿孔延伸贯穿所述包封体。在实施例中,所述方法还包括在所述检查所述光刻胶之后在所述光刻胶内镀覆重布线层。

  在又一实施例中,一种光刻胶包含:光刻胶聚合物树脂;光活性化合物;以及检测添加剂,其中所述检测添加剂在所述光刻胶内的浓度在约0.01重量%与约.03重量%之间。在实施例中,所述检测添加剂是姜黄色素。在实施例中,所述光刻胶聚合物树脂位于半导体衬底上方。在实施例中,所述光刻胶聚合物树脂位于所述半导体衬底周围的包封体之上。在实施例中,所述光刻胶聚合物树脂位于从所述包封体的第一侧延伸到所述包封体的第二侧的穿孔之上。在实施例中,所述光刻胶是正性光刻胶。

  以上内容概述了若干实施例的特征以使所属领域中的技术人员可更好地理解本公开内容的各个方面。所属领域中的技术人员应理解,其可容易地使用本公开作为设计或修改其他工艺及结构的基础来施行与本文中所介绍的实施例相同的目的和/或实现与本文中所介绍的实施例相同的优点。所属领域中的技术人员还应认识到,这些等效构造并不背离本公开的精神及范围,而且他们可在不背离本公开的精神及范围的条件下对其作出各种改变、代替及变更。

《制造半导体装置的方法以及光刻胶.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)