欢迎光临小豌豆知识网!
当前位置:首页 > 物理技术 > 调节控制> 基于Cell-ID无人机城市飞行航线规划系统及方法独创技术8701字

基于Cell-ID无人机城市飞行航线规划系统及方法

2021-02-01 15:23:57

基于Cell-ID无人机城市飞行航线规划系统及方法

  技术领域

  本发明属于无人机技术领域,具体涉及一种基于cell-ID无人机城市飞行航线规划系统及方法。

  背景技术

  无人机现在广泛应用于各行各业,但在城市中无人机飞行,数据传输链路受高楼等城市因素影响不能有效的保障。运营商网络城市室外基站位置基本处去相对较高位置,且信号覆盖范围内基本通视。通过实际测试基站信号在低空区域也有信号覆盖,但受到镜面反射及无线信号多径效应等影响不是很稳定。

  这给无人机在城市飞行造成很大困扰,使得无人机在城市飞行很不稳定,急需解决这一问题。

  发明内容

  为解决现有技术中的不足,本发明提出了一种基于Cell-ID无人机城市飞行航线规划系统及方法,通过采用更加普遍的通信基站,而不是图传或者专用网络,使得无人机在城市飞行更加稳定可靠,避免了无人机飞行中,因镜面反射或者无信号造成的飞行不稳定的问题。

  一种基于Cell-ID无人机城市飞行航线规划系统:包括:多个通信基站,无人机;360度窄波天线、无人机以及多个通信基站;

  所述360度窄波天线被安装在无人机下方,所述无人机与所述多个通信基站之间有数据交互传输;

  所述360度窄波天线,为无线信号测向,通过与所在位置的通信基站进行数据交互,获取在某经纬度的最好通信质量的Cell-ID号码,并通过统计获取到下一位置的最强通信质量Cell-ID号码;

  所述无人机,按照360度窄波天线提供的Cell-ID号码进行飞行;

  所述多个通信基站,通过360度窄波天线为无人机飞行提供通信信号,并分为m个扇区,每个扇区拥有一个唯一的Cell-ID号码。

  一种基于Cell-ID无人机城市飞行航线规划方法,采用基于Cell-ID无人机城市飞行航线规划系统实现,具体流程如下:

  步骤S1:初步航线规划;

  步骤S2:对无人机航线进行矫正,得到矫正后航线;

  步骤S3:对矫正后的航线,进行航线验证,若验证通过,记录验证后的航线,并转到步骤S4,若验证通过,记录验证后的航线,并转到步骤S4,若验证不通过,则转到S2重新进行矫正,即通过360度窄波天线重新获取新的Cell-ID号码。

  所述重新进行矫正,是在无人机验证不通过的两个Cell-ID号码之间进行重新验证,重新获取新的Cell-ID号码。

  步骤S4:航线输出,输出验证后的飞行航线。

  在步骤S1中,所述初步航线规划,具体为:所述无人机将运营商基站信息数据在无人机google地图上加载,并进行起飞点位置、降落点位置、通信基站的Cell-ID选择。

  在步骤S2中,所述对无人机航线进行矫正,具体流程如下:

  在步骤S2中,所述对无人机航线进行矫正,具体流程如下:

  步骤S2.1:无人机按照初步航线规划起飞点位置起飞,进入预定飞行高度悬停;

  步骤S2.2:打开360度云台窄波束天;

  步骤S2.3:无人机获取起飞点位置的Cell-ID信息;

  步骤S2.4:调整无人机机头面向在降落点位置的方向,并以无人机与降落点位置两点之间连线为中心线的正负各60度,进行15度步进120度扫描;

  步骤S2.5:获取各个角度基站Cell-ID号码及信号质量列表;

  步骤S2.6:寻找到信号质量列表中,信号质量最高的Cell-ID号码;

  步骤S2.7:将信号质量最高的Cell-ID号码作为下一飞行目标,并向该方向进行直线飞行;

  步骤S2.8:当该Cell-ID号码的信号电平值达到最低设定值时,无人机悬停,转到步骤S2.4重新进行扫描,重复步骤2.4~步骤2.8;

  步骤S2.9:直到无人机到达降落点位置,并在降落点位置所在的Cell-ID区域降落,记录从起飞点位置到降落点位置的飞行航迹。

  本申请所达到的有益效果:

  本发明提出了一种基于Cell-ID无人机城市飞行航线规划系统及方法,使用该方法规划的航线能保障飞行过程中数据通信质量,使得无人机不会受到镜面反射及无线信号多径效应的影响,解决了无人机城市飞行安全问题,使得无人机的飞行可靠而稳定。

  附图说明

  图1本发明实施例的一种基于Cell-ID无人机城市飞行航线规划方法流程图;

  图2本发明实施例的对无人机航线进行矫正流程图;

  图3本发明实施例的验证后的飞行航线。

  具体实施方式

  下面结合附图对本申请作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本申请的保护范围。

  一种基于Cell-ID无人机城市飞行航线规划系统:包括:360度窄波天线、无人机以及多个通信基站;

  所述360度窄波天线被安装在无人机下方,所述无人机与所述多个通信基站之间有数据交互传输;

  所述360度窄波天线,为无线信号测向,通过与所在位置的通信基站进行数据交互,获取在某经纬度的最好通信质量的Cell-ID号码,并通过统计获取到下一位置的最强通信质量Cell-ID号码;使用360度窄波天线既便宜又符合技术要求,其它专业测向天线可以满足要求,但成本过高。

  所述无人机,按照360度窄波天线提供的Cell-ID号码进行飞行;

  所述多个通信基站,通过360度窄波天线为无人机飞行提供通信信号,并分为m个扇区,每个扇区拥有一个唯一的Cell-ID号码。

  一种基于Cell-ID无人机城市飞行航线规划方法,采用基于Cell-ID无人机城市飞行航线规划系统实现,如图1所示,具体流程如下:

  步骤S1:初步航线规划;

  步骤S2:对无人机航线进行矫正,得到矫正后航线;

  步骤S3:对矫正后的航线,进行航线验证,若验证通过,记录验证后的航线,并转到步骤S4,若验证通过,记录验证后的航线,并转到步骤S4,若验证不通过,则转到S2重新进行矫正,即通过360度窄波天线重新获取新的Cell-ID号码。

  所述重新进行矫正,是在无人机验证不通过的两个Cell-ID号码之间进行重新验证,重新获取新的Cell-ID号码。

  步骤S4:航线输出,输出验证后的飞行航线。

  在步骤S1中,所述初步航线规划,具体为:所述无人机将运营商基站信息数据在无人机google地图上加载,并进行起飞点位置、降落点位置、通信基站的Cell-ID选择。

  在步骤S2中,所述对无人机航线进行矫正,如图2所示,具体流程如下:

  步骤S2.1:无人机按照初步航线规划起飞点位置起飞,进入预定飞行高度悬停;

  步骤S2.2:打开360度云台窄波束天;

  步骤S2.3:无人机获取起飞点位置的Cell-ID信息;

  步骤S2.4:调整无人机机头面向在降落点位置的方向,并以无人机与降落点位置两点之间连线为中心线的正负各60度,进行15度步进120度扫描;

  步骤S2.5:获取各个角度基站Cell-ID号码及信号质量列表;

  步骤S2.6:寻找到信号质量列表中,信号质量最高的Cell-ID号码;

  步骤S2.7:将信号质量最高的Cell-ID号码作为下一飞行目标,并向该方向进行直线飞行;

  步骤S2.8:当该Cell-ID号码的信号电平值达到最低设定值时,无人机悬停,本实施例最低设定值为:-75db,转到步骤S2.4重新进行扫描,重复步骤2.4~步骤2.8;

  步骤S2.9:直到无人机到达降落点位置,并在降落点位置所在的Cell-ID区域降落,记录从起飞点位置到降落点位置的飞行航迹。本发明实施例的验证后的飞行航线,如图3所示。

  本发明申请人结合说明书附图对本发明的实施示例做了详细的说明与描述,但是本领域技术人员应该理解,以上实施示例仅为本发明的优选实施方案,详尽的说明只是为了帮助读者更好地理解本发明精神,而并非对本发明保护范围的限制,相反,任何基于本发明的发明精神所作的任何改进或修饰都应当落在本发明的保护范围之内。

《基于Cell-ID无人机城市飞行航线规划系统及方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)