基于ANFIS的长周期光纤光栅曲率测量方法
第一、技术领域
本发明涉及长周期光纤光栅应变传感领域,特别是涉及一种基于ANFIS长周期光纤光栅曲率测量方法。
第二、背景技术
长周期光纤光栅应变传感器具有体积小、重量轻、抗电磁干扰、耐久性高、耐腐蚀等优点,因此受到工程界的广泛关注。其工作原理是基于长周期光纤光栅在曲率等物理参数作用下发生的谐振波长位移。因此确定外部参数和谐振波长之间的关系,并具有足够的精度是至关重要的。
长周期光纤光栅的透射谱谐振波长和衰减率随弯曲曲率变化。长周期光纤光栅弯曲过程中,弯曲使纤芯基模和包层模的模场分布发生变化,从而使纤芯基模和包层模之间的耦合系数发生变化。根据长周期光纤光栅所表现出来的弯曲特性,在光纤传感和光纤通信领域具有独特的应用。根据长周期光纤光栅谐振波长和谐振峰幅值的变化得到被测物体弯曲曲率的大小,从而直接测量工程结构的曲率,实现对工程结构的实时监测。
对于倾角θ的光纤光栅的耦合系数为:
其中,光纤的轴线方向为z,v为曲率调制深度,Λ为未弯曲的长周期光纤光栅的周期,ω是入射光的频率,为纤芯有效曲率分布,为光栅在一个周期内曲率的空间平均值,Et(x,y)和为光纤基模电场的横向分量及其共轭,通常为高斯分布函数。从式(1)可看出,v和减小会使光纤光栅中光场的耦合系数减小,进而改变光栅反射率和色散特性,减小谐振峰的振幅。
长周期光纤光栅发生弯曲时将会改变纤芯曲率分布,从而产生辐射损耗、改变模式传播常数。长周期光纤光栅的弯曲特性较为复杂,弯曲不仅仅使光纤光栅产生应力,发生弹光效应,且使长周期光纤光栅发生倾斜并伴有啁啾光纤光栅。弯曲还会使光的模式发生变化,引起光纤中模式的模场中心往外偏移,导致纤芯中泄露模和纤芯基膜场重叠程度减小,引起谐振强度减小。
由材料力学知识分析,可知在两边简单支撑的梁上,于其中心施加集中负载,其垂直方向的变形可近似表达为
其中,h为梁中心的弯曲量(即挠度,单位m)。x为离左边支撑点的距离。梁的另一半部分的形变沿平面对称,当弯曲不太大时,即时,曲率可以用表示。
在梁的中心,即时,其曲率达到一个最大值沿着梁的中心两边的曲率对称地随着离中心距离的增加而线性减小,在支撑点其曲率为0。所以用于测量的长周期光纤光栅所承受的弯曲在一定范围内按照一定的规律随曲率变化,其曲率值与弯曲的参数为h、l、长周期光纤光栅的长度和位置都有关系。
不同制作技术的长周期光纤光栅弯曲特性具有不同的方向相关性,单侧CO2激光写入的长周期光纤光栅具有明显的弯曲相关性。其单侧写入导致其写入的长周期光纤光栅曲率分布不均匀,谐振波长(谐振峰幅值)在激光入射和出射的地方对弯曲最为敏感;而谐振波长(谐振峰幅值)在与激光入射方向垂直的方向对弯曲最不敏感。本发明所用的长周期光纤光栅是用紫外线在光敏光纤中刻写的,其方向敏感性比较弱。
长周期光纤光栅可以测量很多物理量,其谐振波长随温度和应变呈良好的线性关系,在实际的传感测量中可通过获得长周期光纤光栅的谐振波长,并通过建立好的谐振波长与温度(应变)的关系式对温度(应变)进行反推。然而,长周期光纤光栅的曲率传感特性则相当复杂,实际的曲率测量中,根据已有的谐振波长值对曲率进行反推十分困难,针对这个问题,采用自适应神经模糊系统对长周期光纤光栅的曲率进行预测。
自适应神经模糊系统是一种将模糊逻辑和神经网络有机结合的新型的模糊推理系统结构。它利用神经网络的学习机制自动地从输入输出数据中抽取规则,同时具有模糊系统易于表达人类知识的特点,能够改进传统模糊控制器中必须依靠人的思维反复调整隶属函数才能减小误差,增进效能的缺陷。
第三、发明内容
为了解决上述存在问题。本发明提供一种基于ANFIS的长周期光纤光栅曲率测量方法,用于长周期光纤光栅传感器测量曲率。其目的结合模糊逻辑和神经网络出色的学习、逼近和预测能力等优势,提高长周期光纤的光纤光栅传感器曲率定量的准确性。为达此目的:
本发明提供一种基于ANFIS长周期光纤光栅曲率测量方法,具体步骤如下;
1)建立训练样本集;
对不同曲率的作用下的长周期光纤光栅的透射光谱进行采集,对曲率波长和振幅数据进行收集,并建立训练样本集;
2)构造一个自适应神经模糊推理系统;
建立自适应神经模糊推理系统,以训练集中的长周期光纤光栅的谐振波长和振幅作为输入,曲率大小作为输出,选择输入输出的隶属度函数,设置系统的训练目标误差,使用混合学习算法训练隶属度函数参数,从而确定自适应模糊推理系统中的输入隶属度函数参数和输出隶属度函数参数;
3)对长周期光纤光栅的曲率大小进行测量;
自适应神经模糊推理系统用于根据测得的透射光谱确定曲率,输入变量是长周期光纤光栅的谐振波长和振幅,输出变量是曲率大小。
作为本发明进一步改进,步骤二具体步骤如下:
2-1)建立具有图形化界面工具的长周期光纤光栅edit自适应神经模糊推理系统,在图形界面上对数据进行训练和检测;
自适应神经模糊推理系统,其建模过程分五层进行:
第1层:该层的所有节点是自适应的,用于将所有输入信号按照隶属度函数进行模糊化。
输出函数表达式为:
OA,i、OB,i分别是x1,x2第一层的输出,其中和分别为x1,x2的隶属度函数,隶属度函数可以是任何合适的参数化隶属函数。
典型的钟型函数:
其中,{ai,bi,ci}是前提参数集,其值在训练阶段不断更新。
第2层:该层的所有节点是固定的,用于将所有输入信号进行相乘,计算各规则的激励强度wi,其表达式为:
第3层:该层的所有节点是固定的,用于计算第i条规则激励强度在所有总激励强度中的均值,输入结果是归一化激励强度其表达式为:
第4层:该层的所有节点是自适应的,用于计算第i条规则对总输出的贡献比例,其表达式为:
其中,pi、qi和ki为该节点的后件参数。
第5层:该层只有一个节点,用于计算所有输入的总输出量,其表达式为:
在自适应神经模糊推理系统结构中,有两层(第1层和第4层)的节点是自适应的。第1层的每个节点有3个前提参数{ai,bi,ci},第4层的每个节点有3个后件参数{pi,qi,ki},学习算法的目的是优化所有参数,使得长周期光纤光栅的输出能够更好的和输入数据进行匹配,可以发现,前提参数是非线性的,结论参数是线性的。因此,结合了最小二乘法和梯度下降法的混合算法被提出混合算法包括前向传播和反向传播。前向传播中,采用最小二乘法,以固定的前提参数来优化结论参数,一旦找到优化的结论参数,反向传播立刻开始。反向传播中,采用梯度下降法,在结论参数固定的前提下,调整前提参数。重复此过程直到所有平方差小于特定值或达到最大学习次数。
2-2)自适应神经模糊推理系统输入的训练样本包括50组不同曲率下的长周期光纤光栅的谐振波长和振幅;
2-3)选择每组输入的10个隶属度函数,隶属函数的类型选用高斯型隶属度函数;
2-4)设置系统训练目标误差为0.02,采用混合学习算法对隶属度函数进行训练,获得隶属度函数参数。
本发明提供一种基于ANFIS长周期光纤光栅曲率测量方法,用于长周期光纤光栅传感器测量曲率。其目的结合模糊逻辑和神经网络出色的学习、逼近和预测能力等优势,提高长周期光纤的光纤光栅传感器曲率定量的准确性,与现有长周期光纤光栅的曲率测量方法相比,本发明具有曲率定量准确性高,学习周期短,模型通用性强,只需稍加修改就可以应用于其他传感应用的优点。
第四、附图说明
图1是本发明涉及的长周期光纤光栅三点弯曲示意图;
图2是本发明涉及的长周期光纤光栅的结构示意图;
图3是本发明涉及的模糊推理系统的系统结构示意图;
图4是本发明涉及的自适应神经模糊推理系统的训练流程示意图;
图5是本发明涉及的长周期光纤光栅曲率测量的程序流程示意图。
第五、具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
本发明提供一种基于ANFIS的长周期光纤光栅曲率测量方法,用于长周期光纤光栅传感器测量曲率。其目的结合模糊逻辑和神经网络出色的学习、逼近和预测能力等优势,提高长周期光纤的光纤光栅传感器应变定量的准确性。
作为本发明一种实施例,本发明涉及一种基于长周期光纤光栅的长周期光纤的光纤光栅曲率识别方法,如图3所示包括以下步骤:
1)建立训练样本集
对不同曲率的作用下的长周期光纤光栅的透射光谱进行采集,对曲率大长和振幅数据进行收集,并建立训练样本集;
2)构造一个自适应神经模糊推理系统
建立自适应神经模糊推理系统,以训练集中的长周期光纤光栅的谐振波长和振幅作为输入,曲率大小作为输出,选择输入输出的隶属度函数,设置系统的训练目标误差,使用混合学习算法训练隶属度函数参数,从而确定自适应模糊推理系统中的输入隶属度函数参数和输出隶属度函数参数。如图2所示。
2-1)建立具有图形化界面工具的长周期光纤光栅edit自适应神经模糊推理系统,在图形界面上对数据进行训练和检测;
自适应神经模糊推理系统,其建模过程分五层进行,如图1所示:
第1层:该层的所有节点是自适应的,用于将所有输入信号按照隶属度函数进行模糊化。
输出函数表达式为:
OA,i、OB,i分别是x1,x2第一层的输出,其中和分别为x1,x2的隶属度函数,隶属度函数可以是任何合适的参数化隶属函数。
典型的钟型函数:
其中,{ai,bi,ci}是前提参数集,其值在训练阶段不断更新。
第2层:该层的所有节点是固定的,用于将所有输入信号进行相乘,计算各规则的激励强度wi,其表达式为:
第3层:该层的所有节点是固定的,用于计算第i条规则激励强度在所有总激励强度中的均值,输入结果是归一化激励强度其表达式为:
第4层:该层的所有节点是自适应的,用于计算第i条规则对总输出的贡献比例,其表达式为:
其中,pi、qi和ki为该节点的后件参数。
第5层:该层只有一个节点,用于计算所有输入的总输出量,其表达式为:
2-2)自适应神经模糊推理系统输入的训练样本包括50组不同曲率下的长周期光纤光栅的谐振波长和振幅;
2-3)选择每组输入的10个隶属度函数,隶属函数的类型选用高斯型隶属度函数;
2-4)设置系统训练目标误差为0.02,采用混合学习算法对隶属度函数进行训练,获得隶属度函数参数;
3)对长周期光纤光栅的曲率大小进行测量
自适应神经模糊推理系统用于根据测得的透射光谱确定曲率,输入变量是长周期光纤光栅的谐振波长和振幅,输出变量是曲率大小。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。
【基于ANFIS的长周期光纤光栅曲率测量方法】相关文章: