欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > 发动机装置> 气体发动机燃烧系统及具有其的气体发动机独创技术25810字

气体发动机燃烧系统及具有其的气体发动机

2021-02-15 21:38:05

气体发动机燃烧系统及具有其的气体发动机

  技术领域

  本发明涉及发动机技术领域,尤其涉及一种气体发动机燃烧系统。本发明还涉及一种发动机。

  背景技术

  本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。

  天然气由于燃烧中不含C-C链,燃烧过程中生成的碳烟排放很低,同时,天然气中的碳含量比例低,放出同样的热量时,碳排放低于柴油和汽油燃料,因此,机动车采用天然气为燃料可以有效控制排放,对缓解环境污染和降低碳排放具有重要意义。

  但是,天然气层流火焰的传播速度慢,导致气体发动机的燃烧速度慢,易于出现气体发动机爆震和排气温度过高的问题。

  发明内容

  本发明的目的是至少解决气体发动机的燃烧速度慢,易于出现气体发动机爆震和排气温度过高的问题。该目的是通过以下技术方案实现的:

  本发明的第一方面提出了一种气体发动机燃烧系统,所述气体发动机燃烧系统包括:

  缸盖组件,所述缸盖组件包括缸盖本体以及分别设置在所述缸盖本体上的进气机构和排气机构,所述缸盖上设有内凹槽、第一进气孔和第二进气孔和凸起结构,所述第一进气、和所述第二进气孔分别与所述内凹槽连通,所述凸起结构设置在所述内凹槽的内壁面上且位于所述第一进气孔和所述第二进气孔之间;

  缸体和活塞,所述缸体设置有缸孔,所述活塞以可移动的方式设置在所述缸孔孔内,所述缸盖与所述缸体配合,所述内凹槽与所述缸孔对应设置。

  根据本发明的气体发动机燃烧系统,凸起结构设置在内凹槽的内壁面上且位于第一进气孔和第二进气孔之间,当燃烧系统启动时,活塞沿缸孔向远离内凹槽的方向运动,气体分别经第一进气孔和第二进气孔进入到内凹槽和缸孔形成的空间内,活塞再向靠近内凹槽的方向运动,当活塞到达其运动的上止点时,气体被压入内凹槽内,通过点燃内凹槽内被压缩的气体,从而为发动机提供动力。气体分别经第一进气孔和第二进气孔进入时,由于凸起结构设置在第一进气孔和第二进气孔之间,避免了两股气流发生干涉,从而保证了气体的流动速度,使得气体被点燃后的燃烧速度得到了保证,进而避免了气体发动机出现爆震和排气温度过高的问题。

  另外,根据本发明的气体发动机燃烧系统,还可具有如下附加的技术特征:

  在本发明的一些实施例中,所述凸起结构向所述缸孔的方向延伸。

  在本发明的一些实施例中,所述凸起结构的外表面为圆弧面。

  在本发明的一些实施例中,所述缸盖上还设有第一排气孔、第二排气孔和凹槽结构,所述第一排气孔和所述第二排气分别与所述内凹槽连通,所述凹槽结构包括第一凹槽部,所述第一凹槽部设置在所述内凹槽的内壁面上且位于所述第一排气孔和所述第二排气孔之间。

  在本发明的一些实施例中,所述缸盖上还设有第二凹槽部,所述第二凹槽部设置在所述内凹槽的内壁面上且位于所述第一进气孔和所述第一排气孔之间。

  在本发明的一些实施例中,所述缸盖上还设有第三凹槽部,所述第三凹槽部设置在所述内凹槽的内壁面上且位于所述第二进气孔和所述第二排气孔之间。

  在本发明的一些实施例中,所述缸盖上设有排气通道,所述第一排气孔和所述第二排气孔分别与所述排气通道连通;

  所述排气机构包括第一排气门、第二排气门和第一驱动装置,所述第一排气门设于所述第一排气孔,所述第二排气门设于所述第二排气孔,所述第一驱动装置分别与所述第一排气门和所述第二排气门传动连接。

  在本发明的一些实施例中,所述缸盖上设有第一进气通道和第二进气通道,所述第一进气通道与所述第一进气孔连通,所述第二进气通道与所述第二进气孔连通;

  所述进气机构包括第一进气门、第二进气门和第二驱动装置,所述第一进气门设于所述第一进气孔,所述第二进气门设于所述第二进气孔,所述第二驱动装置分别与所述第一进气门和所述第二进气门传动连接。

  在本发明的一些实施例中,所述第一进气通道为螺旋进气道;

  并且/或者所述第二进气道为切向进气道;

  并且/或者所述第二驱动装置为升程可变结构。

  本发明的第二方面提出了一种气体发动机,所述气体发动机包括如上所述的气体发动机燃烧系统。

  根据本发明的气体发动机,该气体发动机的气体发动机燃烧系统中,凸起结构设置在内凹槽的内壁面上且位于第一进气孔和第二进气孔之间,当燃烧系统启动时,活塞沿缸孔孔向远离内凹槽的方向运动,气体分别经第一进气孔和第二进气孔进入到内凹槽和缸孔形成的空间内,活塞再向靠近内凹槽的方向运动,当活塞到达其运动的上止点时,气体被压入内凹槽内,通过点燃内凹槽内被压缩的气体,从而为发动机提供动力。气体分别经第一进气孔和第二进气孔进入时,由于凸起结构设置在第一进气孔和第二进气孔之间,避免了两股气流发生干涉,从而保证了气体的流动速度,使得气体被点燃后的燃烧速度得到了保证,进而避免了气体发动机出现爆震和排气温度过高的问题。

  附图说明

  通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的附图标记表示相同的部件。在附图中:

  图1示意性地示出了根据本发明实施方式的气体发动机燃烧系统的结构示意图;

  图2为图1中所示的气体发动机燃烧系统的缸盖组件的结构示意图(仅示出部分结构);

  图3为图2所示缸盖组件另一视角的结构示意图。

  附图标记如下:

  100为气体发动机燃烧系统;

  10为缸盖;

  101为第一进气孔,102为第二进气孔,103为凸起结构,104为第一凹槽部,105为第二凹槽部,106为第三凹槽部,107为第一排气孔,108为第二排气孔,109为内凹槽,110为排气通道,111为第一进气通道;

  20为活塞;

  30为进气机构,31为第一进气门,32为第二进气门,33为第一排气门,34为第二排气门,35为第二驱动装置。

  具体实施方式

  下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。

  应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。

  尽管可以在文中使用术语第一、第二、第三等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或部段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一区域、层或部段区分开。除非上下文明确地指出,否则诸如“第一”、“第二”之类的术语以及其它数字术语在文中使用时并不暗示顺序或者次序。因此,以下讨论的第一元件、部件、区域、层或部段在不脱离示例实施方式的教导的情况下可以被称作第二元件、部件、区域、层或部段。

  为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“内部”、“外部”、“内侧”、“外侧”、“下面”、“下方”、“上面”、“上方”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中装置的不同方位。例如,如果在图中的装置翻转,那么描述为“在其它元件或者特征下面”或者“在其它元件或者特征下方”的元件将随后定向为“在其它元件或者特征上面” 或者“在其它元件或者特征上方”。因此,示例术语“在……下方”可以包括在上和在下的方位。装置可以另外定向(旋转90度或者在其它方向)并且文中使用的空间相对关系描述符相应地进行解释。

  如图1至图3所示,根据本发明的实施方式,本发明提出了一种气体发动机燃烧系统100,气体发动机燃烧系统100包括缸盖组件、缸体和活塞20,缸盖组件包括缸盖10本体以及分别设置在缸盖10本体上的进气机构30和排气机构,缸盖10上设有内凹槽109、第一进气孔101和第二进气孔102和凸起结构103,第一进气孔101和第二进气孔102分别与内凹槽109连通,凸起结构103设置在内凹槽109的内壁面上且位于第一进气孔101和第二进气孔102之间,缸体设置有缸孔,活塞20以可移动的方式设置在缸孔内,缸盖10与缸体配合,内凹槽109与缸孔对应设置。

  具体地,凸起结构103设置在内凹槽109的内壁面上且位于第一进气孔101和第二进气孔102之间,当燃烧系统启动时,活塞20沿缸孔向远离内凹槽109的方向运动,气体分别经第一进气孔101和第二进气孔102进入到内凹槽109和缸孔形成的空间内,活塞20再向靠近内凹槽109的方向运动,当活塞20到达其运动的上止点时,气体被压入内凹槽109内,通过点燃内凹槽109内被压缩的气体为发动机提供动力,燃烧后的废气再经排气机构排出。气体分别经第一进气孔101和第二进气孔102进入时,由于凸起结构103设置在第一进气孔101和第二进气孔102之间,避免了两股气流发生干涉,从而保证了气体的流动速度,使得气体被点燃后的燃烧速度得到了保证,进而避免了气体发动机出现爆震和排气温度过高的问题。

  需要理解的是,凸起结构103形成在内凹槽109的内壁面上,该凸起结构103为内凹槽109的内壁面向内凹槽109的内部拱起形成且具有一定的高度,第一进气孔101和第二进气孔102分别开设在拱起结构的两侧,当经第一进气孔101和第二进气孔102进入的气体处于凸起结构103的高度范围内时,凸起结构103对其两侧进入的气体形成阻隔,避免出现相互扰流而降低流动速度的情况,当第一进气孔101和第二进气孔102进入的气体处于凸起结构103的高度范围外时,分别经第一进气孔101和第二进气孔102进入的气体进行混合,从而保证了气体能够充分混合,使得燃烧效率得到了保证。

  需要指出的是,气体经第一进气孔101和第二进气孔102进入到内凹槽109和缸孔形成的空间后,气体在内凹槽109和缸孔内形成涡流(气体绕缸孔的轴线有组织的旋转运动)和滚流(缸孔内气流运动的一种,由其涡流的流动方向与缸孔的轴线垂直而得名),进一步地保证了气体的流动速度,避免了气体发动机出现爆震和排气温度过高的问题。另外,为了提高缸体的耐磨性能,在缸孔内安装有缸套,活塞以可移动的方式设置在缸套内,缸套和缸体为分体式结构,缸套和缸体分别加工,再将缸套安装在缸体上,从而可以实现单独维修和更换。另外,本申请中,内凹槽109为穹顶结构,活塞20为挤流活塞,进一步保证了对气体的挤流效果,从而保证了气流速度。

  进一步理解的是,如图2和图3所示,凸起结构103向缸孔的方向延伸。具体地,内凹槽109的内壁面为凹弧面且朝向缸孔,第一进气孔101和第二进气孔102分别设置在位于凸起结构103两侧的位置上,从而使得第一进气孔101和第二进气孔102均与倾斜于缸孔的轴线方向,进而使得经第一进气孔101和第二进气孔102进入内凹槽109内的气体进入方向倾斜于缸孔的轴线方向,通过将凸起结构103向缸孔的方向延伸,凸起结构103的两侧面分别对经第一进气孔101和第二进气孔102进入的气体形成阻挡,有效避免了两股气流的干涉,保证了进入内凹槽109以及缸孔内的气流速度,使得燃烧速率得到了进一步地保证。

  需要指出的是,第一进气孔101和第二进气孔102的直径相等,凸起结构103的宽度大于或等于第一进气孔101的半径,第一进气孔101的孔心和第二进气孔102的孔心之间的连线垂直经过凸起结构103的中间位置,从而进一步保证凸起结构103两侧气流的阻挡,使得气体的进入速度得到了保证。

  进一步地,如图2和图3所示,凸起结构103的外表面为圆弧面。具体地,通过将凸起结构103的外表面设置为圆弧面,从而减小了气体与凸起结构103接触时的摩擦,进而降低了凸起结构103对气流速度的影响,使得燃烧速率得到了保证,避免了气体发动机出现爆震和排气温度过高的问题。

  需要指出的是,凸起结构103沿缸孔的轴向的截面近似为椭圆形,气流沿椭圆形结构的外边缘流动,进一步降低了凸起结构103对气流速度的影响,使得进气的速度得到了保证。

  进一步地,如图2和图3所示,缸盖10上还设有第一排气孔107、第二排气孔108和凹槽结构,第一排气孔107和第二排气分别与内凹槽109连通,凹槽结构包括第一凹槽部104,第一凹槽部104设置在内凹槽109的内壁面上且位于第一排气孔107和第二排气孔108之间。具体地,第一排气孔107和第二排气孔108均用于将燃烧后的废气排出,第一排气孔107和第二排气孔108之间的内壁面上设有第一凹槽部104,当活塞20沿缸孔运行至其上止点时,被压缩的气体进入到第一凹槽部104内,气体在第一凹槽部104内处于运动状态,进一步保证了气流速度,提高了燃烧速率,进而避免了气体发动机出现爆震和排气温度过高的问题。需要理解的是,当活塞20处于上止点时,活塞20与内凹槽109所述形成的空间用于压缩气体,被压缩的气体处于涡流运动,通过在内凹槽109的内壁面上设有第一凹槽部104,使得气体的涡流运动得到了增强,当气体被点燃后,提高了燃烧后期火焰的传播速度以及热效率,降低了排放。

  需要指出的是,内凹槽109的内壁面的内壁面凹陷形成凹槽结构,该凹槽结构的第一凹槽部104的表面为第一弧形面,通过将第一凹槽部104的表面设置为第一弧形面,降低了第一凹槽部104的表面对气流的影响,保证了气流速度,避免了气体发动机出现爆震和排气温度过高的问题。

  另外,第一进气孔101、第二进气孔102、第一排气孔107和第二排气孔108间隔设置在内凹槽109的内壁面上,同时,四者呈矩形设置,第一进气孔101和第二进气孔102相邻,第一排气孔107和第二排气孔108相邻,从而保证了发动机进气和排气的稳定性。

  进一步地,如图2和图3所示,缸盖10上还设有第二凹槽部105,第二凹槽部105设置在内凹槽109的内壁面上且位于第一进气孔101和第一排气孔107之间。具体地,第二凹槽部105设置在第一进气孔101和第二排气孔108之间,当活塞20沿缸孔运行至其上止点时,被压缩的气体进入到第一凹槽部104和第二凹槽部105内,气体在第一凹槽部104内和第二凹槽部105内均处于运动状态,进一步保证了气流速度,提高了燃烧速率,进而避免了气体发动机出现爆震和排气温度过高的问题。

  需要理解的是,当活塞20处于上止点时,活塞20与内凹槽109所述形成的空间用于压缩气体,被压缩的气体处于涡流运动,通过在内凹槽109的内壁面上设有第一凹槽部104以及第二凹槽部105,使得气体的涡流运动得到了增强,当气体被点燃后,提高了燃烧后期火焰的传播速度以及热效率,降低了排放。

  需要指出的是,内凹槽109的内壁面的表面凹陷形成第二凹槽部105,并且第二凹槽部105的表面为第二弧形面,通过将第二凹槽部105的表面设置为第二弧形面,降低了第二凹槽部105的表面对气流的影响,保证了气流速度,避免了气体发动机出现爆震和排气温度过高的问题。

  进一步地,如图2和图3所示,缸盖10上还设有第三凹槽部106,第三凹槽部106设置在内凹槽109的内壁面上且位于第二进气孔102和第二排气孔108之间。具体地,第三凹槽部106设置在第二进气孔102和第二排气孔108之间,当活塞20沿缸孔运行至其上止点时,被压缩的气体进入到第一凹槽部104、第二凹槽部105内以及第三凹槽部106内,气体在第一凹槽部104内和、第二凹槽部105内和第三凹槽部106内均处于运动状态,进一步保证了气流速度,提高了燃烧速率,进而避免了气体发动机出现爆震和排气温度过高的问题。

  需要理解的是,当活塞20处于上止点时,活塞20与内凹槽109所述形成的空间用于压缩气体,被压缩的气体处于涡流运动,通过在内凹槽109的内壁面上设有第一凹槽部104、第二凹槽部105以及第三凹槽部106,使得气体的涡流运动得到了增强,当气体被点燃后,提高了燃烧后期火焰的传播速度以及热效率,降低了排放。

  需要指出的是,内凹槽109的内壁面的表面凹陷形成第三凹槽部106,并且第三凹槽部106的表面为第三弧形面,通过将第三凹槽部106的表面设置为第三弧形面,降低了第三凹槽部106的表面对气流的影响,保证了气流速度,避免了气体发动机出现爆震和排气温度过高的问题。

  进一步地,如图2和图3所示,缸盖10上设有排气通道110,第一排气孔107和第二排气孔108分别与排气通道110连通排气机构包括第一排气门33、第二排气门34和第一驱动装置,第一排气门33设于第一排气孔107,第二排气门34设于第二排气孔108,第一驱动装置分别与第一排气门33和第二排气门34传动连接。具体地,第一排气门33以可开合的方式设于第一排气孔107,第二排气门34以可开合的方式设于第二排气孔108,第一驱动装置分别与第一排气门33和第二排气门34传动连接,当需要将燃烧后的废气排出时,第一驱动装置驱动第一排气门33和第二排气门34打开,缸孔内的废气分别经第一排气孔107和第二排气孔108排出排气通道110,从而实现了气体燃烧后废气的充分排出,避免了废气与未燃气体混合而导致未燃气体无法充分燃烧的问题。

  进一步地,如图1至图3所示,缸盖10上设有第一进气通道111和第二进气通道,第一进气通道111与第一进气孔101连通,第二进气通道与第二进气孔102连通,进气机构30包括第一进气门31、第二进气门32和第二驱动装置35,第一进气门31设于第一进气孔101,第二进气门32设于第二进气孔102,第二驱动装置35分别与第一进气门31和第二进气门32传动连接。具体地,第一进气通道111与第一进气孔101连通,第二进气通道与第二进气孔102连通,第一进气门31以可开合的方式设于第一进气孔101,第二进气门32以可开合的方式设于第二进气孔102,当需要进气时,第一驱动装置分别驱动第一进气门31和第二进气门32,使得第一进气门31和第二进气门32分别打开,第一进气通道111内的气体经第一进气孔101进入,第二进气通道内的气体经第二进气孔102进入,进入的两股气流被内凹槽109的内壁面上的凸起结构103所阻隔,从而保证了进入到内凹槽109内的气流速度。另外,通过第一进气门31、第二进气门32以及第二驱动装置35,从而有效实现了对气体发动机进气的控制,进而保证了气体发动机能够稳定高效的运行。

  需要指出的是,通过第一进气通道111向内凹槽109内输送的气体在内凹槽109以及缸孔内进行涡流运动,通过第二进气通道向内凹槽109内输送的气流在内凹槽109及缸孔内进行滚流运动,当两股气流在内凹槽109及缸孔内混合后形成的气流既有涡流运动也有滚流运动,从而保证了气体的充分混合,进而保证气体燃烧充分,使得燃烧效率得到了提高。

  需要指出的是,凸起结构103靠近第一进气孔101的一侧设置,从而避免了凸起结构103对经第二进气孔102进入的气体所形成的滚流造成影响,进一步保证了气流的速度。

  进一步地,如图1至图3所示,第一进气通道111为螺旋进气道。具体地,螺旋进气道设于缸盖10内,气体经过螺旋进气道 时发生旋转运动,螺旋进气道 与第一进气孔101连通,从而使得经第一进气孔101进入的气体在内凹槽109以及缸孔内发生涡流运动,进而提高了气流速度,避免了气体发动机出现爆震和排气温度过高的问题。

  具体地,第二进气道为切向进气道。第二进气通道与第二进气孔102连通,第二进气道为沿缸孔的切向方向设置的切向进气道,气体经过切向进气道进入后,气体在内凹槽109以及缸孔内产生滚流运动,从而保证了气体的流动速度,提高了气体的燃烧效率,进一步地避免了气体发动机出现爆震和排气温度过高的问题。

  具体地,如图1所示,第二驱动装置35为升程可变结构。利用第二驱动装置35的升程可变结构配合螺旋进气道可根据工况的变化调整滚流强度,利用第二驱动装置35的升程可变结构配合缸盖10的内凹槽109的凸起结构103,从而实现对滚流强度的调整,进而满足气体发动机处于不同工况的使用需求。

  本发明还提出了一种气体发动机,气体发动机包括如上的气体发动机燃烧系统100。

  具体地,该气体发动机的气体发动机燃烧系统100中,凸起结构103设置在内凹槽109的内壁面上且位于第一进气孔101和第二进气孔102之间,当燃烧系统启动时,活塞20沿缸孔向远离内凹槽109的方向运动,气体分别经第一进气孔101和第二进气孔102进入到内凹槽109和缸孔形成的空间内,活塞20再向靠近内凹槽109的方向运动,当活塞20到达其运动的上止点时,气体被压入内凹槽109内,通过点燃内凹槽109内被压缩的气体,从而为发动机提供动力。气体分别经第一进气孔101和第二进气孔102进入时,由于凸起结构103设置在第一进气孔101和第二进气孔102之间,避免了两股气流发生干涉,从而保证了气体的流动速度,使得气体被点燃后的燃烧速度得到了保证,进而避免了气体发动机出现爆震和排气温度过高的问题。

  以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

  一种新能源汽车电池组的温控系统,包括控制器,其特征在于,所述温控系统还包括分别与所述控制器电连接的电源、加热件、测温组件和控制组件;

  所述测温组件用于采集电池箱的外部环境温度和动力电池的当前温度;

  所述控制组件用于控制电池箱与驾驶室连通或电池箱与外界连通;

  所述加热件用于电池箱内部的加热;

  所述控制器依据外部环境温度和动力电池的当前温度控制电池箱与驾驶室连通或电池箱与外界连通。

《气体发动机燃烧系统及具有其的气体发动机.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)