欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > 发动机机器> 由包含铼的超合金制成的涡轮部件以及相关制造方法独创技术12382字

由包含铼的超合金制成的涡轮部件以及相关制造方法

2021-03-19 01:53:06

由包含铼的超合金制成的涡轮部件以及相关制造方法

  技术领域

  本发明涉及一种例如用于航空的涡轮部件,诸如涡轮叶片或喷嘴叶片。

  背景技术

  在涡轮喷气发动机中,由燃烧室产生的排气可以达到1200℃或者甚至1600℃以上的高温。因此,涡轮喷气发动机的与这些排气接触的部件(诸如涡轮叶片)例如必须能够在这些高温下维持其机械性能。

  为此,已知的是,以“超合金”制造涡轮喷气发动机的某些部件。超合金是高强度金属合金的族,其可以在相对接近其熔点的温度(通常是其熔化温度的0.7倍至0.8倍)下工作。

  为了增加这些超合金的耐热性并且保护其免受氧化和腐蚀,已知的是,用充当隔热层的涂层对这些超合金进行涂覆。

  图1示出了例如为涡轮叶片6或喷嘴叶片的涡轮部件1的截面的示意图。部件1包括基板2,该基板由涂覆有隔热层10的单晶金属超合金2制成。

  隔热层10通常由金属子层、保护层和绝热层组成。金属子层覆盖金属超合金基板。金属子层本身被保护层覆盖,该保护层通过金属子层的氧化形成。保护层保护超合金基板免受腐蚀和/或氧化。绝热层覆盖保护层。绝热层可以由陶瓷(例如掺氧化钇的氧化锆)制成。

  金属子层在超合金基板的表面与保护层之间提供粘结:金属子层有时被称为“粘结层”。

  子层可以由单个铝化镍β-NiAl或改性铂β-NiAlPt制成。子层的平均铝质量分数(介于0.35至0.45之间)足以单独形成氧化铝(Al2O3)保护层,以保护超合金基板免受氧化和腐蚀。

  然而,当部件经受高温时,超合金基板与金属子层之间的镍(尤其是铝)的浓度差导致各种元素的扩散,特别是来自基板的镍扩散到金属子层,以及来自金属子层的铝扩散到超合金。这种现象被称为“相互扩散”。

  相互扩散可能导致在基板的与子层接触的部分中形成一级和二级反应区(Secondary Reaction Zone,SRZ)。

  图2是覆盖基板2的子层3的截面的显微照片。显微照片是在部件经受一系列热循环以模拟部件1的温度工作条件之前拍摄的。基板2富含铼,即铼的平均质量分数大于0.04。已知的是,在超合金的组分中使用铼,以增加超合金部件的抗蠕变性。还已知的是,当基板富含铼时,使用具有低的平均铬质量分数(即小于0.08)的超合金,以增加结构的抗氧化性和抗腐蚀性。通常,基板2具有γ-γ’Ni相。子层3是β-NiAlPt类型的。基板在基板2的直接被子层3覆盖的部分中具有一级相互扩散区5。基板2还具有直接被一级相互扩散区5覆盖的二级相互扩散区6。图2中所示的二级相互扩散区的厚度约为35μm,并且更通常地介于20μm至50μm之间。

  图3是覆盖基板2的子层3的截面的显微照片。该显微照片示出了在经受上述一系列热循环之后的子层3和基板2。子层3覆盖基板2。基板2具有一级相互扩散区5和二级相互扩散区6。局部地,二级相互扩散区的厚度可以大于100μm并且可以厚至150μm,如图3中的白色段所示。

  含铼的低铬超合金与β-NiAlPt类型的子层的组合导致形成二级反应区。通过使部件1经受高温条件(例如1000℃以上)而在基板2中产生裂纹8和/或高机械应力,二级反应区的形成极大地降低了超合金的机械性能(蠕变、疲劳)。

  因此,超合金基板与子层之间的相互扩散会对超合金部件的使用寿命产生不利影响。

  发明内容

  本发明的目的在于提供一种解决方案,与已知部件相比,该解决方案在使用期间有效地保护超合金涡轮部件免受氧化和腐蚀,同时增加其使用寿命。

  在本发明中,该目的是借助于涡轮部件来实现的,该涡轮部件包括:由包含铼的单晶镍基超合金制成的基板,该基板具有γ-γ’Ni相,并且平均铬质量分数小于0.08;以及覆盖基板的镍基金属超合金子层,其特征在于,金属超合金子层至少包括铝、镍、铬、硅、铪并且具有体积占主导的γ’-Ni3Al相。

  由于金属子层具有接近基板结构的同素异形结构,因此防止和/或限制了二级反应区的形成。因此,限制或防止了在经受高温条件(例如1000℃以上)的部件的基板中裂纹的形成,以及保护性氧化铝层的剥落。

  另外,由于金属子层包括铝,同时具有体积占主导的γ’-Ni3Al相,因此在工作条件下,与使用已知的金属子层相比,该金属子层可以在更长的时间内被氧化以形成保护性铝层。

  另外,涡轮部件可以具有以下特征:

  -子层还具有γ-Ni相;

  -基板的平均铼质量分数大于0.04;

  -子层的平均铂质量分数介于0至0.05之间;

  -子层的平均铝质量分数介于0.06至0.25之间;

  -子层的平均铬质量分数介于0.07至0.20之间;

  -子层的平均铪质量分数小于5%;

  -子层的平均硅质量分数小于5%;

  -子层进一步包括选自钴、钼、钨、钛和钽中的至少一种元素;

  -氧化铝的保护层覆盖子层;

  -绝热陶瓷层覆盖保护层;

  -子层的厚度介于5μm至50μm之间。

  本发明进一步涉及一种用于制造涡轮部件的方法,该方法包括以下步骤:将具有体积占主导的γ’-Ni3Al相的镍基超合金的子层真空沉积在包含铼并具有γ-γ’Ni相的镍基超合金基板上。

  该沉积可以通过选自物理气相沉积、热喷涂(例如通过高速氧气燃料(high-velocity oxygen fuel,HVOF)系统进行的热喷涂)、焦耳蒸发、脉冲激光烧蚀和溅射中的一种方法来进行。

  可以通过对不同金属材料的靶进行共同喷涂和/或共同蒸发来使子层沉积。

  附图说明

  将在以下描述中进一步强调其它特征和优点,以下描述是纯说明性和非限制性的并且应当结合附图进行阅读,在附图中:

  -图1示出了例如为涡轮叶片或喷嘴叶片的涡轮部件的横截面的示意图;

  -图2是覆盖基板的子层的截面的显微照片;

  -图3是覆盖基板的子层3的截面的显微照片;

  -图4示意性地示出了隔热层的截面,该隔热层覆盖根据本发明的实施例的涡轮部件的基板。

  定义

  术语“超合金”是指在高温和高压下对氧化、腐蚀、蠕变和循环(特别是机械或热)应力表现出非常好的耐性的复合合金。超合金在制造航空用部件(例如涡轮叶片)方面具有具体应用,因为这些超合金构成了高强度合金的族,这些高强度合金可以在相对接近其熔点的温度(通常是其熔化温度的0.7至0.8倍)下工作。

  超合金可以具有两相微观结构,该两相微观结构包括形成基质的第一相(被称为“γ相”)和形成在基质中硬化的析出物的第二相(被称为“γ’相”)。

  超合金的“基础”是基质的主要金属成分。在大多数情况下,超合金包括铁基、钴基或镍基,但是有时也包括钛基或铝基。

  “镍基超合金”具有在抗氧化性、耐高温断裂性和重量之间取得良好折中的优点,这证明了这些镍基超合金在涡轮喷气发动机的最热部件中的使用。

  镍基超合金由奥氏体面心立方γ-Ni类型(可选地在α取代的固溶体中包含添加剂(Co、Cr、W、Mo))的γ相(或基质)以及γ’-Ni3X类型(其中,X=Al、Ti或Ta)的γ’相(或析出物)组成。γ’相具有从面心立方结构派生的有序的L12结构,该L12结构与基质相干,即具有与该基质非常接近的原子晶格。

  由于其有序的特性,γ’相具有显著的性能,即具有在温度高达约800℃的情况下增加的机械阻力。γ相与γ’相之间的非常强的相干性赋予了镍基超合金非常高的热机械强度,该热机械强度本身取决于比值γ/γ’以及硬化析出物的尺寸。

  在本发明的所有实施例中,超合金富含铼,即,超合金的平均铼质量分数大于0.04,使得与由不含铼的超合金制成的部件相比,其能够提高超合金部件的抗蠕变性。在本发明的所有实施例中,超合金的铬含量也低,即平均铬质量分数小于0.08,优选地小于0.05,以便当在超合金中存在铼时增加结构的抗氧化性。

  因此,镍基超合金通常在高达700℃下具有高机械强度,然后在800℃以上具有急剧下降的机械强度。

  术语“质量分数”是指一个元件或一组元件的质量与总质量之比。

  具体实施方式

  图4示意性地示出了隔热层10的截面,该隔热层覆盖根据本发明的实施例的涡轮部件1的基板2。

  图4中所示的元件可以独立地代表如图1所示的涡轮叶片6、喷嘴叶片的元件或涡轮的任何其他元件、部件或组件。

  基板2由镍基超合金形成。含铼基板2的平均质量分数大于0.04,优选地介于0.045至0.055之间。优选地,基板的铬的平均质量分数很低,即小于0.08,优选地小于0.05。

  隔热层10由金属子层3、保护层4和绝热层9组成。

  基板2被金属子层3覆盖。金属子层3被保护层4覆盖。保护层4被绝热层9覆盖。

  具有接近基板2的结构的同素异形结构的金属子层3的沉积防止了二级反应区的形成。特别地,所沉积的子层3与基板一样具有γ相和γ’相。

  子层3具有由铝形成的组分,从而使得部件能够抵抗氧化和腐蚀。特别地,子层3的大部分体积具有γ’-Ni3Al相。优选地,子层3还具有γ-Ni相。因此,与具有γ-Ni多数相(其中,铝质量分数较小)的子层相比,子层3具有与基板2的结构接近的结构,并且包括铝储备,该铝储备允许该子层通过较长时间的氧化来形成氧化铝的保护层4。优选地,铝子层3的平均质量分数介于0.06至0.25之间,并且优选地介于0.06至0.12之间。

  下面的表1示出了镍基超合金子层3的组分的示例。不同的组分由字母A至C表示。对于已经在1000℃下进行了热处理的子层3,还描述了具有γ相的子层3的质量分数(以百分比计)以及具有γ’相的子层3的体积分数。

  

  表1

  组分A对应于NiCrAlHfSiPt类型的子层3,并且具有多数相γ’-Ni3Al和相γ-Ni。组分B对应于NiCrAlHfSi类型的子层3,并且具有多数相γ’-Ni3Al并优选地具有γ-Ni相。对于在1100℃下已经过热处理的子层3,具有γ相的子层3的质量分数为40质量%,并且具有γ’相的子层3的质量分数为60质量%。组分C对应于NiCrAlHfSi类型的子层3,并且具有多数相γ’-Ni3Al和γ-Ni相。

  通常,子层3优选地具有小于0.02的平均铂质量分数和/或介于0.07至0.17之间的平均铬质量分数。因此,提高了部件的抗氧化性。

  子层3可以在真空下例如借助于物理气相沉积(Physical Vapor Deposition,PVD)进行沉积。不同的PVD方法可以用于制造子层3,诸如溅射、焦耳蒸发、激光烧蚀和电子束辅助的物理气相沉积。子层3也可以通过热喷涂进行沉积。

  因此,可以在不使用通过使化学元素(诸如铂)扩散到基板2中而形成子层的方法的情况下将子层3沉积在基板2上。这些沉积方法还简化了子层3在基板2上的形成并且允许更好地控制子层3的化学组分。与已知方法相反,这些沉积方法还使得能够使具有γ’-Ni3Al相并且可选地具有γ-Ni相的子层3沉积。

  在使子层3沉积时,可以同时并行使用不同金属材料的多个靶。这种类型的沉积可以通过共同蒸发或通过共同溅射来进行:在子层3沉积期间施加在每个靶上的蒸发或溅射的相应速率于是确定了所述层的化学计量。

《由包含铼的超合金制成的涡轮部件以及相关制造方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)