欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > > 一种复合轴瓦的耐腐蚀水泵推力轴承及其加工方法独创技术14946字

一种复合轴瓦的耐腐蚀水泵推力轴承及其加工方法

2021-02-07 09:24:16

一种复合轴瓦的耐腐蚀水泵推力轴承及其加工方法

  技术领域

  本发明属于水泵滑动推动轴承技术领域,具体涉及一种复合轴瓦的耐腐蚀水泵推力轴承及其加工方法。

  背景技术

  电站水泵需要长期在空气湿度较高的环境中工作,某些水泵如潜水泵等甚至需要在水介质中工作,水等其他腐蚀性物质的浸入以及防锈不良等状况容易导致轴承腐蚀,影响轴承寿命;水泵机组推力轴承在承担轴向推力时,传统轴瓦表面时常出现摩擦损耗、摩擦热量聚集导致烧瓦的现象,严重时甚至出现机组被迫停机的现象。水泵机组轴瓦的工况一直是电站的重点巡检对象,一旦轴瓦不满足工况需要或出现问题,电站就需要更换瓦体,从而满足机组的正常运转。而传统轴瓦可靠性差,摩擦损耗大,容易导致一系列摩擦磨损问题,使得轴承寿命难以预测而成为工程隐患,严重影响生产效益,这就对轴承的润滑性能提出了更高的要求。

  发明内容

  本发明提出了一种复合轴瓦的耐腐蚀水泵推力轴承及其加工方法,通过采用聚四氟乙烯和不锈钢材料,提高了耐磨性能、承载性能、自润滑性能以及良好的承载性能与耐腐蚀性能,特别适用于长期在湿度较高的环境中工作的水泵轴承。

  本发明的技术方案是这样实现的:

  一种复合轴瓦的耐腐蚀水泵推力轴承,其包括推力盘、复合轴瓦、轴瓦基底和轴承基座,其特征在于,所述推力盘中间设有通孔,所述通孔侧面上设有键槽,且通孔轴向位置处设有轴向限位槽,所述推力盘安装在复合轴瓦的上方,所述复合轴瓦热压烧结于轴瓦基底的上方,所述轴瓦基底上设有轴瓦基底安装孔和油沟,所述轴瓦基底通过轴瓦基底安装孔安装在轴承基座上,所述轴承基座位于轴瓦基底的下方,所述复合轴瓦由改性PTFE层、磷青铜螺旋丝层和铜粉层热压烧结而成。

  在本发明的复合轴瓦的耐腐蚀水泵推力轴承中,所述改性PTFE层、磷青铜螺旋丝层和铜粉层之间的厚度比列为1∶2∶2。

  在本发明的复合轴瓦的耐腐蚀水泵推力轴承中,所述改性PTFE层表面上加工有棱形网状微织构。

  在本发明的复合轴瓦的耐腐蚀水泵推力轴承及其加工方法,其具体加工方法按以下步骤实施:

  1)推力盘加工:切割出直径为280mm、厚35mm的不锈钢棒料作为坯料,用车床去除不锈钢棒料的外皮,精加工,形成直径为264mm、厚30mm的不锈钢圆盘,在圆盘顶部中心镗出直径为101mm的内孔,打通,在该内孔基础上,由圆盘顶部开始车削出直径为121mm、深8mm的內圆,形成轴向限位槽,使用插床在内孔上切削出宽20mm、深6mm的键位槽,加工的公差为0.02mm,车顶圆倒角,为0.5×45°,热处理;

  2)复合轴瓦与轴瓦基底复合层加工:使用球磨机将聚四氟乙烯材料磨成粒径为10um以下的颗粒,利用热压法将纳米陶瓷粉末与PTFE颗粒混合,热熔后精加工成改性PTFE板料,即改性PTFE层;

  2.1)将磷青铜金属丝顺时针卷绕在直径2mm的黑色棒料上,形成螺旋状,经过热处理后形成磷青铜螺旋丝层;

  2.2)线切割不锈钢板,精加工后形成轴瓦基底层,热处理;

  2.3)使用热压烧结炉将将铜粉烧结在不锈钢轴瓦基底上,形成铜粉层与轴瓦基底的复合体,再将磷青铜螺旋丝层烧结在铜粉-不锈钢基底复合层上,最后将改性PTFE层烧结在磷青铜螺旋丝-铜粉-不锈钢基底复合体上,经轧制形成薄壁复合轴瓦与轴瓦基底复合层试样;

  2.4)线切割复合轴瓦与轴瓦基底复合层形成圆形板料,在板料外圆边倒0.5×45°圆角,采用飞秒激光技术在改性PTFE层表面加工棱形网状微织构,每条织构深0.5mm,宽50um,棱形网状微织构具体由成40°夹角的棱形边相互交错而成,加工时先从复合轴瓦与轴瓦基底复合层外圆边开始切向加工竖边,直至加工到另一端,再逆时针旋转复合层40°角,依次切向加工棱形网状微织构的斜边,直至加工到另一端;

  2.5)在圆形板料上镗直径为120mm的内孔,打通,形成环形板料,顺时针依次在环形板料上铣6个油沟,油沟呈半扇形,扇角为21.8°,油沟深15mm,相邻油沟之间相距一个呈半扇形的复合轴瓦的扇形角度,每个复合轴瓦瓦长60mm、瓦宽60mm、瓦高15mm,接着在每个油沟中间镗M8螺栓孔,M8螺栓孔即为轴瓦基底安装孔,加工公差为0.02mm,车出轴瓦基底倒角0.5×45°;

  3)轴承基座加工:切割出直径为310mm、厚65mm的不锈钢棒料作为坯料,用车床车去不锈钢棒料的外皮,精加工,形成直径为300mm、厚60mm的不锈钢棒,在钢棒顶部中心镗出直径为120mm的内孔,打通,在钢棒外圆车去30mm的不锈钢料,刀具进给深度为30mm,从而形成直径为300mm、厚30mm的法兰,在法兰边缘依次加工6个M10螺栓孔,在顶部依次镗6个M8螺栓孔,车顶圆倒角,为0.5×45°,加工公差为0.02mm,热处理;

  4)奥氏体不锈钢推力盘、轴瓦基底以及轴承基座热处理;

  4.1)将加工成型的推力盘、轴瓦基底以及轴承基座放入高温炉中,温度加热到350℃,保温1.5小时,空冷,去除加工应力;

  4.2)固溶处理,继续加热,直至温度达到1000-1050℃范围内,保持炉内温度2小时,取出,水冷至常温;

  4.3)稳定化处理,继续回炉,升温至900℃,保温3-5小时,空冷至室温;

  4.4)附加回火,温度加热到200℃,保温2-3小时,最后在炉中自然冷却;

  5)轴承装配:首先使用6个M10的螺栓将轴承基座安装于机架上,接着使用6个M8的螺栓通过轴瓦基底安装孔将复合轴瓦与轴瓦基底复合层安装于轴承基座上方,在具有棱形网状微织构的改性PTFE层和油沟表面注入一层润滑油,接着将推理盘安装与复合轴瓦的正上方,完成装配。

  实施本发明的这种复合轴瓦的耐腐蚀水泵推力轴承及其加工方法,具有以下有益效果:本案通过采用飞秒激光技术将棱形微织构加工于推力轴承轴瓦表面,能有效的改善推力盘与轴瓦滑动摩擦表面间的润滑状况,并将纳米陶瓷粉末填充进聚四氟乙烯(PTFE)材料中进行改性,与磷青铜螺旋丝和铜粉形成复合轴瓦材料,具有良好的耐磨性能、承载性能以及自润滑性能,且推力盘、轴瓦基底以及轴承基座均采用不锈钢材料制成,具有良好的承载性能与耐腐蚀性能,这就解决了水泵轴承需要长期在湿度较高的环境中工作问题。

  附图说明

  图1为本发明复合轴瓦的耐腐蚀水泵推力轴承的2/3截切立体结构示意图;

  图2为本发明中推力盘的结构示意图;

  图3为本发明中复合轴瓦与轴瓦基底复合层的配合示意图;

  图4为本发明中复合轴瓦及棱形网状微织构的结构示意图;

  图5为本发明中复合轴瓦与轴瓦基底复合层的加工方法流程示意图。

  图中:推力盘1、复合轴瓦2、轴瓦基底3、轴承基座4、键槽11、轴向限位槽12、改性PTFE21、磷青铜螺旋丝层22、铜粉层23、棱形网状微织构211、轴瓦基底安装孔31、油沟32。

  具体实施方式

  下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。

  如图1至5所示的本发明的这种复合轴瓦的耐腐蚀水泵推力轴承,其包括推力盘1、复合轴瓦2、轴瓦基底3和轴承基座4,推力盘1中间设有通孔,通孔侧面上设有键槽11,且通孔轴向位置处设有轴向限位槽12,轴向限位槽12和键槽11的设置使得转轴能稳定的固定在转轴上,推力盘1安装在复合轴瓦2的上方,复合轴瓦2热压烧结于轴瓦基底3的上方,轴瓦基底3上设有轴瓦基底安装孔和油沟32,轴瓦基底3通过轴瓦基底安装孔安装在轴承基座4上,轴承基座4位于轴瓦基底2的下方,复合轴瓦2由改性PTFE层21、磷青铜螺旋丝层22和铜粉层23热压烧结而成,改性PTFE层21、磷青铜螺旋丝层22和铜粉层23之间的厚度比列为1∶2∶2,改性PTFE层21表面上加工有棱形网状微织构211,改性PTFE层21、磷青铜螺旋丝层22和铜粉层23均由耐腐蚀材料奥氏体不锈钢制成,其这种复合轴瓦2的耐腐蚀水泵推力轴承具体加工方法按以下步骤实施:

  1)推力盘1加工:切割出直径为280mm、厚35mm的不锈钢棒料作为坯料,用车床去除不锈钢棒料的外皮,精加工,形成直径为264mm、厚30mm的不锈钢圆盘,在圆盘顶部中心镗出直径为101mm的内孔,打通,在该内孔基础上,由圆盘顶部开始车削出直径为121mm、深8mm的內圆,形成轴向限位槽12,使用插床在内孔上切削出宽20mm、深6mm的键槽11,加工的公差为0.02mm,车顶圆倒角,为0.5×45°,热处理;

  2)复合轴瓦2与轴瓦基底3复合层加工:使用球磨机将聚四氟乙烯(PTFE)材料磨成粒径为10um以下的颗粒,利用热压法将纳米陶瓷粉末与PTFE颗粒混合,热熔后精加工成改性PTFE板料,即改性PTFE层21;

  2.1)将磷青铜金属丝顺时针卷绕在直径2mm的黑色棒料上,形成螺旋状,经过热处理后形成磷青铜螺旋丝层22;

  2.2)线切割不锈钢板,精加工后形成轴瓦基底3层,热处理;

  2.3)使用热压烧结炉将将铜粉烧结在不锈钢轴瓦基底3上,形成铜粉层23与轴瓦基底3的复合体,再将磷青铜螺旋丝层22烧结在铜粉-不锈钢基底复合层上,最后将改性PTFE层21烧结在磷青铜螺旋丝-铜粉-不锈钢基底复合体上,经轧制形成薄壁复合轴瓦2与轴瓦基底3复合层试样;

  2.4)线切割复合轴瓦2与轴瓦基底3复合层形成圆形板料(直径为240mm、高30mm,其中轴瓦基底3高15mm,铜粉层23高6mm,磷青铜螺旋丝层22高6mm,改性PTFE层21高3mm),在板料外圆边倒0.5×45°圆角,采用飞秒激光技术在改性PTFE层21表面加工棱形网状微织构211,每条织构深0.5mm,宽50um,棱形网状微织构211具体由成40°夹角的棱形边相互交错而成,加工时先从复合轴瓦2与轴瓦基底3复合层外圆边开始切向加工竖边,直至加工到另一端,再逆时针旋转复合层40°角,依次切向加工棱形网状微织构211的斜边,直至加工到另一端;

  2.5)在圆形板料上镗直径为120mm的内孔,打通,形成环形板料,顺时针依次在环形板料上铣6个油沟32,油沟32呈半扇形,扇角为21.8°,油沟32深15mm,相邻油沟32之间相距一个呈半扇形的复合轴瓦2的扇形角度,每个复合轴瓦2瓦长60mm、瓦宽60mm、瓦高15mm,接着在每个油沟32中间镗M8螺栓孔,M8螺栓孔即为轴瓦基底安装孔31,加工公差为0.02mm,车出轴瓦基底3倒角0.5×45°;

  3)轴承基座4加工:切割出直径为310mm、厚65mm的不锈钢棒料作为坯料,用车床车去不锈钢棒料的外皮,精加工,形成直径为300mm、厚60mm的不锈钢棒,在钢棒顶部中心镗出直径为120mm的内孔,打通,在钢棒外圆车去30mm的不锈钢料,刀具进给深度为30mm,从而形成直径为300mm、厚30mm的法兰,在法兰边缘依次加工6个M10螺栓孔(大孔直径20mm、深10mm,小孔打通),在顶部依次镗6个M8螺栓孔(深30mm),车顶圆倒角,为0.5×45°,加工公差为0.02mm,热处理;

  4)奥氏体不锈钢推力盘1、轴瓦基底3以及轴承基座4热处理;

  4.1)将加工成型的推力盘1、轴瓦基底3以及轴承基座4放入高温炉中,温度加热到350℃,保温1.5小时,空冷,去除加工应力;

  4.2)固溶处理,继续加热,直至温度达到1000-1050℃范围内,保持炉内温度2小时,取出,水冷至常温;

  4.3)稳定化处理,继续回炉,升温至900℃,保温3-5小时,空冷至室温;

  4.4)附加回火,温度加热到200℃,保温2-3小时,最后在炉中自然冷却;

  5)轴承装配:首先使用6个M10的螺栓将轴承基座4安装于机架上,接着使用6个M8的螺栓通过轴瓦基底安装孔31将复合轴瓦2与轴瓦基底3复合层安装于轴承基座4上方,在具有棱形网状微织构211的改性PTFE层21和油沟32表面注入一层润滑油,接着将推力盘1安装与复合轴瓦2的正上方,完成装配。

  实施例1

  本发明在使用时,推力盘1通过平键安装于转轴上,同时推力盘1的轴向限位槽12起到防止转轴产生轴向位移的作用,在具有棱形网状微织构211的改性PTFE层21和油沟32表面注入一层润滑油,推力盘1与复合轴瓦2及轴瓦基底3通过6个M8螺栓安装于轴承基座上。转轴运转,润滑油随推力盘1逐渐带入棱形微织构211的激光加工槽内,相当于微型的“油沟”,可使得推力盘1与轴瓦两摩擦接触表面间时刻补充润滑油;在轴向载荷作用下,两摩擦接触表面间形成润滑油膜层,产生油压,增加轴承的承载能力,从而使轴承润滑性能得到改善;此外,轴承材料均为防腐蚀性材料,特别适用于需要长期在湿度较高的环境中工作的水泵轴承。

  本发明的工作原理为:首先,依次将推力盘1、复合轴瓦2、轴瓦基底3和轴承基座4依次安装在转轴上,固定好后,当发动机处于潮湿的工作环境中时,由于改性PTFE层21表面加工棱形网状微织构211,改善滑动摩擦表面间润滑状况,且由于表面的微型油沟使得两磨檫接触表面间补充了润滑油,从而改善了轴承的润滑性能,并且工程塑料具有良好的耐磨性能和自润滑性能,使得其被广泛应用于滑动轴承技术领域,并将增强体添加到工程塑料中,与钢胚基底进行复合加工,可提高塑料-金属-金属三层复合材料轴承的耐磨性能和承载性能。 至此,本发明目的得以完成。

  以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

《一种复合轴瓦的耐腐蚀水泵推力轴承及其加工方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)