欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种多晶半导体材料及其制备方法独创技术8134字

一种多晶半导体材料及其制备方法

2021-02-02 16:28:16

一种多晶半导体材料及其制备方法

  技术领域

  本发明涉及电力电子陶瓷领域,尤其涉及一种多晶半导体材料及其制备方法。

  背景技术

  二十世纪九十年代,一种集故障机械脱离、远程报警功能的标准轨道安装的模块化的浪涌保护器(简称SPD)由德国OBO公司、DEHN、PHOENIX等公司引进到中国大陆。该产品以其标准化的设计、完善的过流及过热自动脱离保护等性能收到广泛欢迎,迅速在通讯基站、铁路、银行、低压配电等领域得到广泛应用。

  九十年代中期,国内防雷器制造厂家开始跟进研制同类产品。但是当时的压敏电阻厂家不具备生产完全满足这类产品的核心器件压敏防雷芯片的技术能力。2000年以后,虽有部分厂家生产了部分防雷芯片,但在大电流冲击能力、工频过载耐受能力方面存在各种问题。防雷芯片主要通过进口德国西门子等厂家的产品。(注:本专利中的去离子水是通过反渗透等处理方式,去除了呈离子形式的杂质后的纯水,其电阻率大于5.0%20MΩ·cm(兆欧厘米),下同。

  发明内容

  发明的目的:为了提供一种效果更好的多晶半导体材料及其制备方法,具体目的见具体实施部分的多个实质技术效果。

  为了达到如上目的,本发明采取如下技术方案:

  方案一:

  一种多晶半导体材料,其特征在于,以ZnO为主成分,组份及含量为ZnO%2088~98mol%、Bi2O3%200.5~4.0mol%%20、Sb2O3%200.4~2.0mol%%20、Co3O4%200.3~2.0mol%%20、MnCO3%200.3~2.0mol%、Ni2O30.5~2.0mol%。

  方案二:

  一种多晶半导体材料的制备方法,其特征在于,包含如下步骤,

  ①以ZnO为主成分,组份及含量为ZnO%2088~98mol%、Bi2O3%200.5~4.0mol%%20、Sb2O3%200.4~2.0mol%%20、Co3O4%200.3~2.0mol%%20、MnCO3%200.3~2.0mol%、Ni2O30.5~2.0mol%;先将ZnO以外的材料进行称量混料;其中,Bi2O3、%20Sb2O3采用其纳米等级的材料;

  ②将称量混合后的材料加入以∮5氧化锆球为介质球的砂磨机中,并按照含固量45%计算加入离子水,湿法球磨1小时;

  ③给砂磨机中加入ZnO,并按含固量55%计算加入离子水,并按ZnO的1wt%加入PVA和分散剂,细磨2小时;

  ④采用压力式造粒塔进行喷雾干燥,入口温度200~400℃,出口温度80~100℃,%20负压20Pa,制得的粉料的松装密度1.30~1.45g/cm3;

  ⑤将粉料压制成密度为3.20~3.30g/cm3的坯片;

  ⑥将坯片通过隧道炉或箱式炉在350~420℃保温2小时,使得坯片中的有机成分分解排出;

  ⑦将坯片通过隧道炉或箱式炉在1020~1240℃保温2.5小时,使坯片成瓷;

  ⑧将瓷片通过丝网印刷制作电极,其中银浆的含银量70~80%;印银后的瓷片通过隧道炉或箱式炉在580~620℃保温10~20分钟,使银浆还原,经过焊接后,通过环氧树脂粉末包封固化后制的压敏电阻。

  采用如上技术方案的本发明,相对于现有技术有如下有益效果:本发明通过特殊的配方设计解决了防雷专用压敏芯片承受较大雷击浪涌电流的问题,在等同几何尺寸下能承受的标称冲击电流是普通产品的2倍以上,同时兼顾了产品承受暂时过电压的能力。采用该专利制作的防雷专用压敏芯片制作的浪涌保护器,主要指标均达到国外同类产品的性能要求,大量替代进口产品。

  具体实施方式

  下面对本发明的实施例进行说明,实施例不构成对本发明的限制:

  本技术通过对于压敏电阻瓷体显微结构、功能添加物的分布并结合烧结过程中ZnO晶粒生长和晶界形成过程的细致研究,经过不断地优化设计同时兼顾环保节能的要求形成了独有的配方体系。本发明的配方是一种宽梯度范围(150~320V/mm)的ZnO压敏电阻专用瓷粉配方,组份及含量包括以ZnO为主成分,组份及含量包括ZnO%2088~98mol%、Bi2O3%200.5~4.0mol%、Sb2O3%200.4~2.0mol%%20、Co3O4%200.3~2.0mol%%20、MnCO3%200.3~2.0mol%、Ni2O30.5~2.0mol%。

  本发明中的材料制备方法其特征在于,对于形成压敏陶瓷晶界的主体添加剂采用了纳米替代技术。本专利通过反复试验找出了主要添加剂采用纳米替代的最佳比例。晶界主体材料的纳米替代技术利用纳米材料的高活性有效降低了固态化学反应的温度,晶界材料的均匀分布显著提ZnO晶粒大小的均匀度,提供高单位体积的能量密度。

  依次按照:“添加物预磨、与主料混料、细磨、喷雾干燥”得到瓷粉。瓷粉再经过“干压成型、排塑、烧结、被银、焊接、包封”制成压敏电阻器件。

  在上述制备方法中的添加剂预磨,是指根据本发明提出组份和比例先将ZnO以外的材料进行称量混料,加入以∮5氧化锆球为介质球的砂磨机中,并按照含固量45%计算加入离子水,湿法球磨1小时。

  在上述制备方法中的与主料混料和细磨,是指给砂磨机中加入ZnO,并按含固量55%计算加入离子水,并按ZnO的1wt%加入PVA和分散剂,细磨2小时。分散剂为聚丙烯酸胺或十二烷基醋酸铵中的一种。PVA和分散剂均为1wt%。

  %20上述方法中的喷雾干燥,是指采用压力式造粒塔,入口温度200~400℃,出口温度80~100,%20负压20Pa,制得的粉料的松装密度1.30~1.45g/cm3。

  上述方法中的干压成型,是指将粉料压制成密度为3.20~3.30g/cm3的坯片。

  上述方法中的排塑,将坯片通过隧道炉或箱式炉在350~420℃保温2小时,使得坯片中的有机成分分解排出。

  上述方法中的烧结,是指将坯片通过隧道炉或箱式炉在1020~1240℃保温2.5小时,使坯片成瓷。

  上述方法中的被银、焊接、包封,是指将瓷片通过丝网印刷制作电极,其中银浆的含银量70~80%;印银后的瓷片通过隧道炉或箱式炉在580~620℃保温10~20分钟,使银浆还原。经过焊接后,通过环氧树脂粉末包封固化后制的压敏电阻。

  下表给出了采用本发明的材料制作的防雷芯片(1#)与市场普通产品(2#)主要性能指标及其与德国EPCOS样本(3#)指标的对比:

  以34S681为例

  

  需要说明的是,本专利提供的多个方案包含本身的基本方案,相互独立,并不相互制约,但是其也可以在不冲突的情况下相互组合,达到多个效果共同实现。

  需要重点说明的是:从上表可见,本专利制作的产品的静态指标非线性系数α、漏电流IL均优于市场普通产品;在承受8/20μА60KA 1次冲击后,电压变化率仅为2.33%远远小于市场普通产品的16.87%,同时也小于代表国际先进水平的德国产品的4.43%;另外体现产品承受暂时过电压的能力的脱扣工频耐受电流有效值大于10A,达到德国产品的同等水平,而市场普通产品均小于5A。

  本专利同时起到了如下技术效果,除了上述数据对比能够得到的结果,本专利同时有如下突出优势。

  本技术中配方不含Cr元素,复合欧盟ROHS指令中的环保要求。

  本发明压敏瓷粉制作防雷芯片的制程中产品不需要进行热处理,是一种免热处理的压敏防雷芯片制造工艺。简化了工艺、提高了生产效率,使得单只产品(以34S681为例)的能耗减少20%以上。

  以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本领域的技术人员应该了解本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的范围内。

《一种多晶半导体材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)