欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 接合体及绝缘电路基板独创技术41225字

接合体及绝缘电路基板

2022-12-29 20:39:22

接合体及绝缘电路基板

  技术领域

  本发明涉及一种接合陶瓷部件与铜部件而成的接合体、具备该接合体的绝缘电路基板。

  本申请主张基于2017年10月27日于日本申请的专利申请2017-208374号及于2018年10月23日于日本申请的专利申请2018-199139号的优先权,并将其内容援用于此。

  背景技术

  在LED或功率模块等半导体装置中,设为在由导电材料构成的电路层上接合有半导体元件的结构。

  在为了控制风力发电、电动汽车、混合动力汽车等而使用的大电力控制用功率半导体元件中,由于发热量较多而作为搭载该半导体元件的基板,从以往广泛使用了具备例如由AlN(氮化铝)、Al2O3(氧化铝)等构成的陶瓷基板和在该陶瓷基板的一个表面接合导电性优异的金属板而形成的电路层的绝缘电路基板。另外,作为功率模块用基板,还提供在陶瓷基板的另一个表面接合金属板而形成了金属层的基板。

  以往,作为对陶瓷基板接合铜板的方法,例如已知在陶瓷基板上重叠铜板的状态下,对它们施加负载的同时在N2气氛中加热至1000℃以上的所谓的DBC法(Direct BondingCopper、直接铜接合法)(例如,参考专利文献1)。

  在此,在通过专利文献1所示的DBC法接合了陶瓷基板与铜板的情况下,由于加热至1000℃以上而进行接合,因此有可能因对陶瓷基板施加热负载而陶瓷基板与铜板的接合可靠性降低。

  因此,在专利文献2中提出了一种接合体(绝缘电路基板),其中,在形成在陶瓷部件与铜部件之间的接合部的陶瓷部件侧形成由Ti等活性金属的氧化物或氮化物等化合物构成的活性金属化合物区域,从该活性金属化合物区域的成为铜部件侧的一面朝向铜部件侧0.5μm~3μm的厚度范围内的接合部的Al浓度被设定在0.5at%以上且15at%以下的范围内。

  在该接合体(绝缘电路基板)中,形成为如下结构:即通过将接合部的Al浓度设定在规定范围内,能够将陶瓷部件与接合部的接合力维持较高,并降低接合部中的剥离率而牢固接合陶瓷部件与铜部件。

  专利文献1:日本特开平04-162756号公报

  专利文献2:日本专利5871081号公报

  但是,在上述的绝缘电路基板的电路层中,有时超声波接合端子材料。

  在此,如专利文献2所记载,在Al浓度被设定在0.5at%以上且15at%以下的范围内的接合部中,由于相对较脆弱而有可能在负载了超声波时会产生龟裂。

  并且,在形成在陶瓷部件侧的活性金属化合物区域为非晶质的情况下,负载有超声波时,有可能以非晶质活性金属化合物层作为起点产生龟裂而导致电路层剥离。

  发明内容

  本发明鉴于上述情况而成,其目的在于提供一种即使在进行了超声波接合的情况下,也能够抑制陶瓷部件与铜部件剥离的接合体及绝缘电路基板。

  为了解决上述课题,本发明的接合体接合由Al系陶瓷构成的陶瓷部件与由铜或铜合金构成的铜部件而成,所述接合体的特征在于,在形成在所述陶瓷部件与所述铜部件之间的接合层中,在所述陶瓷部件侧形成有由含有活性金属的化合物构成的结晶质的活性金属化合物层,从所述活性金属化合物层的所述铜部件侧的界面朝向所述铜部件0.5μm至3μm的厚度范围内的Al浓度为0.15at%以下。

  在该结构的接合体中,在形成在所述陶瓷部件与所述铜部件之间的接合层的所述陶瓷部件侧形成有由含有活性金属的化合物构成的结晶质的活性金属化合物层,因此即使在负载有超声波的情况下,也能够抑制以活性金属化合物层作为起点而产生有龟裂的情况,并能够抑制陶瓷部件与铜部件剥离。

  并且,从所述活性金属化合物层的所述铜部件的界面朝向所述铜部件0.5μm至3μm的厚度范围内的所述接合层的Al浓度被抑制为0.15at%以下,因此即使在负载有超声波的情况下,也能够抑制在接合层中产生龟裂。

  在此,在本发明的接合体中,优选所述活性金属化合物层的厚度被设定在1.5nm以上且150nm以下的范围内。

  根据该结构的接合体,所述活性金属化合物层的厚度被设定在1.5nm以上且150nm以下的范围内,因此在接合界面存在有适当厚度的活性金属化合物层而能够抑制在负载有冷热循环时产生裂纹,且冷热循环可靠性优异。

  并且,在本发明的接合体中,优选所述陶瓷部件由AlN、Al2O3中的任一种构成。

  根据该结构的接合体,通过作为陶瓷部件而选择AlN、Al2O3中的任一种而能够制造绝缘性及耐热性优异的接合体。

  而且,在本发明的接合体中,优选所述活性金属化合物层含有活性金属的氮化物或活性金属的氧化物中的任一种。

  根据该结构的接合体,所述活性金属化合物层含有活性金属的氮化物或活性金属的氧化物中的任一种,因此陶瓷部件与铜部件的接合性提高而能够进一步抑制在负载有超声波时的陶瓷部件与铜部件剥离。

  本发明的绝缘电路基板具备所述接合体,所述绝缘电路基板的特征在于,具备:由所述陶瓷部件构成的陶瓷基板;和形成在该陶瓷基板的一个表面的由所述铜部件构成的电路层。

  根据该结构的绝缘电路基板,作为所述接合体具备由所述陶瓷部件构成的陶瓷基板和形成在该陶瓷基板的一个表面的由所述铜部件构成的电路层,因此即使在对电路层适用超声波接合的情况下,也能够抑制在陶瓷基板与电路层的接合部产生龟裂,并能够抑制电路层与陶瓷基板剥离。

  在此,在本发明的绝缘电路基板中,优选在所述陶瓷基板的与所述电路层相反的一侧的表面形成有金属层。

  在该情况下,通过形成在所述陶瓷基板的与所述电路层相反的一侧的表面的金属层而能够以良好的效率对电路层侧的热进行散热。并且,能够抑制陶瓷基板产生翘曲。

  并且,在本发明的绝缘电路基板中,所述金属层可以是由铜或铜合金构成的结构。

  在该情况下,在陶瓷基板的与电路层相反的一侧的表面形成有由铜或铜合金构成的金属层,因此能够实现散热性优异的绝缘电路基板。

  并且,在本发明的绝缘电路基板中,所述金属层可以是由铝或铝合金构成的结构。

  在该情况下,通过在陶瓷基板的与电路层相反的一侧的表面接合由变形阻力小的铝或铝合金构成的金属层,由此对陶瓷基板施加热应力时,能够通过由铝或铝合金构成的金属层而吸收该热应力,并能够抑制陶瓷基板因热应力引起的破损。

  根据本发明,能够提供一种即使为进行了超声波接合的情况下,也能够抑制陶瓷部件与铜部件剥离的接合体及绝缘电路基板。

  附图说明

  图1为使用了本发明的第一实施方式的绝缘电路基板(接合体)的功率模块的概略说明图。

  图2为本发明的第一实施方式的绝缘电路基板(接合体)的电路层及金属层(铜部件)与陶瓷基板(陶瓷部件)的接合界面的示意图。

  图3为表示本发明的第一实施方式的绝缘电路基板(接合体)的制造方法及功率模块的制造方法的流程图。

  图4为表示本发明的第一实施方式的绝缘电路基板(接合体)的制造方法的说明图。

  图5为使用了本发明的第二实施方式的绝缘电路基板(接合体)的功率模块的概略说明图。

  图6为本发明的第二实施方式的绝缘电路基板(接合体)的电路层(铜部件)与陶瓷基板(陶瓷部件)的接合界面的示意图。

  图7为表示本发明的第二实施方式的绝缘电路基板(接合体)的制造方法及功率模块的制造方法的流程图。

  图8为表示本发明的第二实施方式的绝缘电路基板(接合体)的制造方法的说明图。

  图9为实施例中的本发明例3的陶瓷基板附近的观察结果。

  图10为实施例中的陶瓷基板附近的线分析结果。其中,(a)为本发明例3,(b)为比较例1。

  图11为实施例中的本发明例4的陶瓷基板附近的元素映射图。

  具体实施方式

  以下,参考附图对本发明的实施方式的接合体、绝缘电路基板进行说明。另外,以下所示的各实施方式是为了进一步良好地理解发明的宗旨而具体地进行说明的方式,除非另有特别指定,则并不限定本发明。并且,关于以下的说明中所使用的附图,为了容易了解本发明的特征,方便起见,有时放大显示成为要部的部分,各构成要件的尺寸比率等并不限定为与实际相同。

  (第一实施方式)

  以下,参考图1至图4对本发明的第一实施方式进行说明。

  本发明的第一实施方式的接合体为通过接合作为由Al系陶瓷构成的陶瓷部件的陶瓷基板11和作为由铜或铜合金构成的铜部件的铜板22(电路层12)而构成的绝缘电路基板10。另外,Al系陶瓷是指氧化铝或氮化铝等、由含有Al元素的化合物构成的陶瓷。

  在图1示出本发明的实施方式的绝缘电路基板10及使用该绝缘电路基板的功率模块1。

  该功率模块1具备绝缘电路基板10、经由第一焊锡层2而接合在该绝缘电路基板10的一侧(在图1中为上侧)的半导体元件3及经由第二焊锡层8而配置在绝缘电路基板10的另一侧(在图1中为下侧)的散热器51。

  在此,第一焊锡层2及第二焊锡层8例如为Sn-Ag系、Sn-In系或Sn-Ag-Cu系焊锡材料。

  如图1所示,绝缘电路基板10具备陶瓷基板11、配设在该陶瓷基板11的一个表面(在图1中为上表面)的电路层12及配设在陶瓷基板11的另一个表面(在图1中为下表面)的金属层13。

  陶瓷基板11由Al系陶瓷,例如氮化铝(AlN)、氧化铝(Al2O3)等构成。另外,氮化铝(AlN)、氧化铝(Al2O3)等也可以被ZrO2等强化。

  本实施方式中,陶瓷基板11由散热性优异的氮化铝(AlN)构成。陶瓷基板11的厚度例如被设定在0.2~1.5mm的范围内,在本实施方式中使用0.635mm的陶瓷基板。

  如图4所示,电路层12通过在陶瓷基板11的一个表面接合由铜或铜合金构成的铜板22而形成。在本实施方式中,作为构成电路层12的铜板22而使用无氧铜的轧制板。该电路层12中形成有电路图案,且其一个表面(在图1中为上表面)为搭载半导体元件3的搭载面。在此,电路层12(铜板22)的厚度被设定在0.1mm以上且1.0mm以下的范围内,在本实施方式中设定为0.6mm。

  如图4所示,金属层13通过在陶瓷基板11的另一个表面接合由铜或铜合金构成的铜板23而形成。在本实施方式中,作为构成金属层13的铜板23而使用无氧铜的轧制板。在此,金属层13(铜板23)的厚度被设定在0.1mm以上且1.0mm以下的范围内,在本实施方式中设定为0.6mm。

  散热器51用于冷却所述的绝缘电路基板10,在本实施方式中为散热板。该散热器51优选由热传导性良好的材质构成,在本实施方式中由A6063(铝合金)构成。

  该散热器51在本实施方式中经由第二焊锡层8而与绝缘电路基板10的金属层13接合。

  在此,在图2显示电路层12(铜板22)与陶瓷基板11及金属层13(铜板23)与陶瓷基板11的接合界面的放大图。

  如图2所示,在陶瓷基板11与电路层12(铜板22)及金属层13(铜板23)的接合界面形成有接合层30。

  如图2所示,该接合层30具备:形成在陶瓷基板11侧的由含有活性金属的化合物构成的活性金属化合物层31;和形成在活性金属化合物层31与电路层12(铜板22)及金属层13(铜板23)之间的合金层32。

  在本实施方式中,如后述,使用Cu-P系钎料24与作为活性金属的Ti而接合电路层12(铜板22)及金属层13(铜板23)与陶瓷基板11,因此活性金属化合物层31通过钛化合物而构成。

  并且,活性金属化合物层31为结晶质钛化合物(钛氧化物或钛氮化物)。另外,关于活性金属化合物层31的结晶性,能够通过透射型电子显微镜观察电子衍射图形而确认。在本实施方式中,活性金属化合物层31由钛氧化物构成,且观察到金红石型的电子衍射图形。

  在此,在本实施方式中,所述活性金属化合物层31的厚度优选为1.5nm以上且150nm以下的范围内。

  并且,接合层30中,从活性金属化合物层31的电路层12(铜板22)侧及金属层13(铜板23)侧的界面朝向电路层12(铜板22)及金属层13(铜板23),0.5μm至3μm的厚度范围E内的Al浓度被设定为0.15at%以下。即,从活性金属化合物层31的电路层12(铜板22)侧及金属层13(铜板23)侧的界面,朝向电路层12(铜板22)及金属层13(铜板23)在0.5μm(Δt1)的位置扩展的表面与朝向电路层12(铜板22)及金属层13(铜板23)在3μm(Δt2)的位置扩展的表面之间的、扩展2.5μm的厚度范围E的区域内,Al浓度被设定为0.15at%以下。另外,Al浓度被设定为厚度范围E内的平均值。

  接合层30中的Al成分是通过陶瓷基板11的构成材料、即Al系陶瓷的一部分在接合陶瓷基板11与铜板22、23时分解,且Al成分朝向接合层30扩散而生成。例如,在本实施方式中是构成陶瓷基板11的AlN分解,且Al扩散而成。

  接合层30的厚度范围E内的Al浓度能够通过调整接合陶瓷基板11与铜板22、23时的接合工序S02中的加热温度、保持时间、钎料量、活性金属量而调整陶瓷基板11的分解状态来进行控制。

  并且,合金层32含有包含接合时所使用的钎料的成分中的任一种的合金或金属间化合物。在本实施方式中,如后述,由于使用Cu-P系钎料24,具体而言使用Cu-P-Sn-Ni钎料,因此合金层32具有含有Cu、P、Sn、Ni中的任一种合金或金属间化合物。

  接着,参考图3及图4对上述本实施方式的绝缘电路基板10的制造方法进行说明。

  首先,如图4所示,在陶瓷基板11的一个表面(在图4中为上表面)依次层叠Cu-P系钎料24、钛材料25及成为电路层12的铜板22,并且在陶瓷基板11的另一个表面(在图4中为下表面)依次层叠Cu-P系钎料24、钛材料25及成为金属层13的铜板23(层叠工序S01)。

  在本实施方式中,作为Cu-P系钎料24,使用以3质量%以上且10质量%以下的范围含有P,且以7质量%以上且50质量%以下的范围含有作为低融点元素的Sn,而且以2质量%以上且15质量%以下的范围含有Ni的Cu-P-Sn-Ni钎料。

  在此,Cu-P系钎料24的厚度被设定在10μm以上且50μm以下的范围。

  并且,在本实施方式中,含有作为活性金属元素的Ti的钛材料25的厚度被设定在0.05μm以上且2μm以下的范围内。而且,钛材料25在厚度为0.1μm以上且1.0μm以下的情况下优选通过蒸镀或溅射而成膜,且在厚度为1.0μm以上的情况下优选使用箔材料。

  接着,在向层叠方向进行了加压(压力1~35kgf/cm2(0.1MPa~3.5MPa))的状态下,将陶瓷基板11、Cu-P系钎料24、钛材料25、铜板22及铜板23装入真空加热炉内进行加热而接合(接合工序S02)。

  在本实施方式中,真空加热炉内的压力被设定在10-6Pa以上且10-3Pa以下的范围内。

  并且,加热温度被设定在770℃以上且950℃以下的范围内,且将加热温度下的保持时间设定在5分钟以上且120分钟以下的范围内。而且,将600℃至700℃的升温速度设定在5℃/分钟以上且20℃/分钟以下的范围内。

  在此,在含有作为活性金属元素的Ti的钛材料25的厚度小于0.05μm的情况下,有可能陶瓷基板11与铜板22、23的接合不够充分。另一方面,在钛材料25的厚度大于2μm的情况下,有可能会促进陶瓷基板11的分解,且接合层30的厚度范围E内的Al浓度大于0.15at%,从而在超声波接合时产生龟裂。

  从以上的情况考虑,在本实施方式中,将钛材料25的厚度设定在0.05μm以上且2μm以下的范围内。

  另外,为了可靠地接合陶瓷基板11与铜板22、23,优选将钛材料25的厚度的下限设定为0.1μm以上,更优选设定为0.15μm以上。另一方面,为了抑制陶瓷基板11的分解,优选将钛材料25的厚度的上限设定为1.5μm以下,更优选设定为1.0μm以下。

  在Cu-P系钎料24的厚度为小于10μm的情况下,有可能陶瓷基板11与铜板22、23的接合不够充分。另一方面,在Cu-P系钎料24的厚度大于50μm的情况下,有可能会促进陶瓷基板11的分解,且接合层30的厚度范围E内的Al浓度大于0.15at%,从而在超声波接合时产生龟裂。

  从以上的情况考虑,在本实施方式中,将Cu-P系钎料24的厚度设定为10μm以上且50μm以下的范围内。

  然而,为了可靠地接合陶瓷基板11与铜板22、23,优选将Cu-P系钎料24的厚度的下限设定为15μm以上,更优选设定为20μm以上。另一方面,为了抑制陶瓷基板11的分解,优选将Cu-P系钎料24的厚度的上限设定为40μm以下,更优选设定为35μm以下。

  在接合工序S02中的加热温度小于770℃的情况下,有可能陶瓷基板11与铜板22、23的接合不够充分。另一方面,在接合工序S02中的加热温度大于950℃的情况下,有可能通过陶瓷基板11的热劣化而产生微龟裂,从而在超声波接合时在陶瓷基板11产生裂纹。

  从以上的情况考虑,在本实施方式中,将接合工序S02中的加热温度设定在770℃以上且950℃以下的范围内。

  另外,为了可靠地接合陶瓷基板11与铜板22、23,优选将接合工序S02中的加热温度的下限设定为800℃以上,更优选设定为830℃以上。另一方面,为了抑制陶瓷基板11的热劣化,优选将接合工序S02中的加热温度的上限设定为940℃以下,更优选设定为930℃以下。

  在接合工序S02中的加热温度的保持时间小于5分钟的情况下,有可能陶瓷基板11与铜板22、23的接合不够充分。另一方面,在接合工序S02中的加热温度的保持时间为大于120分钟的情况下,有可能会促进陶瓷基板11的分解,且接合层30的厚度范围E内的Al浓度大于0.15at%,从而在超声波接合时产生龟裂。

  从以上的情况考虑,在本实施方式中,将加热温度的保持时间设定在5分钟以上且120分钟以下的范围内。

  另外,为了可靠地接合陶瓷基板11与铜板22、23,优选将接合工序S02中的加热温度的保持时间的下限设定为15分钟以上,更优选设定为30分钟以上。另一方面,为了抑制陶瓷基板11的分解,优选将接合工序S02中的加热温度的保持时间的上限设定为100分钟以下,更优选设定为90分钟以下。

  在接合工序S02的600℃至700℃的升温速度小于5℃/分钟的情况下,有可能会促进陶瓷基板11的分解,且接合层30的厚度范围E内的Al浓度大于0.15at%,从而在超声波接合时产生龟裂。另一方面,在接合工序S02中的600℃至700℃的升温速度大于20℃/分钟的情况下,有可能通过热冲击而在陶瓷基板11产生微龟裂,从而在超声波接合时在陶瓷基板11产生裂纹。

  从以上的情况考虑,在本实施方式中,将接合工序S02中的600℃至700℃的升温速度设定在5℃/分钟以上且20℃/分钟以下的范围内。

  另外,为了抑制陶瓷基板11的分解,优选将在接合工序S02中的600℃至700℃的升温速度的下限设定为7℃/分钟以上,更优选设定为10℃/分钟以上。另一方面,为了抑制产生因热冲击引起的微龟裂,优选将接合工序S02中的600℃至700℃的升温速度的上限设定为15℃/分钟以下,更优选设定为13℃/分钟以下。

  通过以上的层叠工序S01及接合工序S02制造本实施方式的绝缘电路基板10。

  接着,在绝缘电路基板10的金属层13的另一个表面侧焊锡接合散热器51(散热器接合工序S03)。

  而且,在绝缘电路基板10的电路层12的一个表面通过焊接而接合半导体元件3(半导体元件接合工序S04)。

  通过以上的工序制作出图1所示的功率模块1。

  根据如以上构成的本实施方式的绝缘电路基板10(接合体),在形成在陶瓷基板11与电路层12及金属层13之间的接合层30的陶瓷基板11侧形成有由结晶质的钛氧化物构成的活性金属化合物层31,因此即使在负载超声波的情况下,也能够抑制以活性金属化合物层31为起点产生龟裂,并能够抑制陶瓷基板11与电路层12及金属层13剥离。

  而且,在本实施方式中,将从活性金属化合物层31的电路层12及金属层13侧的界面朝向电路层12及金属层13在0.5μm至3μm的厚度范围E内的接合层30的Al浓度抑制为0.15at%以下,因此即使在负载有超声波的情况下,也能够抑制在接合层30中产生龟裂。

  另外,厚度范围E内的接合层30的Al浓度优选为0.10at%以下,更优选为0.07at%以下。

  并且,在本实施方式中,活性金属化合物层31的厚度被设定为1.5nm以上,因此通过活性金属化合物层31,陶瓷基板11的接合界面附近的强度得到适当地提高,从而能够抑制在冷热循环负载时产生陶瓷基板11的裂纹。另一方面,活性金属化合物层31的厚度被设定为150nm以下,因此不会过剩地形成有硬的活性金属化合物层31,能够抑制在冷热循环负载时陶瓷基板11中所产生的热应变,并能够抑制在冷热循环负载时在陶瓷基板11产生裂纹。

  另外,活性金属化合物层31的厚度的下限优选为3nm以上,更优选为5nm以上。另一方面,活性金属化合物层31的厚度的上限优选为60nm以下,更优选为15nm以下。

  并且,在本实施方式中,陶瓷基板11由氮化铝(AlN)构成,因此能够制作绝缘性及耐热性优异的绝缘电路基板10。

  而且,活性金属化合物层31由钛氧化物构成,因此陶瓷基板11与电路层12及金属层13的接合性得到提高,从而能够进一步抑制陶瓷基板11与电路层12及金属层13剥离。

  而且,在本实施方式中,在陶瓷基板11的与电路层12相反的一侧的表面形成有金属层13,因此能够以良好的效率对在半导体元件3中产生的热进行散热。并且,能够抑制陶瓷基板11产生翘曲。

  并且,金属层13由铜或铜合金构成,因此能够实现散热性优异的绝缘电路基板10。

  (第二实施方式)

  接着,对本发明的第二实施方式进行说明。另外,对于与第一实施方式相同的构成标注相同的符号而记载,且省略详细说明。

  在图5中示出具备本发明的第二实施方式所涉及的绝缘电路基板110的功率模块101。

  该功率模块101具备绝缘电路基板110、经由焊锡层2而接合在该绝缘电路基板110的一个表面(在图5中为上表面)的半导体元件3及接合在绝缘电路基板110的下侧的散热器51。

  陶瓷基板111由Al系陶瓷,例如氮化铝(AlN)、氧化铝(Al2O3)等构成。本实施方式中,陶瓷基板111由散热性优异的氧化铝(Al2O3)构成。另外,构成本实施方式的陶瓷基板111的氧化铝(Al2O3)作为烧结助剂含有SiO2。

  并且,陶瓷基板111的厚度例如被设定在0.2~1.5mm的范围内,在本实施方式中使用0.635mm的陶瓷基板。

  如图8所示,电路层112通过在陶瓷基板111的一个表面接合由铜或铜合金构成的铜板122而形成。在本实施方式中,作为构成电路层112的铜板122而使用无氧铜的轧制板。在该电路层112中形成有电路图案,其一个表面(在图5中为上表面)为搭载有半导体元件3的搭载面。在此,电路层112(铜板122)的厚度被设定在0.1mm以上且1.0mm以下的范围内,在本实施方式中被设定为0.6mm。

  如图8所示,金属层113通过在陶瓷基板111的另一个表面接合由铝或铝合金构成的铝板123而形成。在本实施方式中,作为构成金属层113的铝板123使用纯度99.99质量%以上的铝(4N铝)的轧制板。在此,金属层113(铝板123)的厚度被设定在0.2mm以上且6mm以下的范围内,在本实施方式中被设定为2.0mm。

  在本实施方式中,散热器51使用Al-Si系钎料等而接合在绝缘电路基板110的金属层113。

  在此,在图6示出电路层112(铜板122)与陶瓷基板111的接合界面的放大图。

  如图6所示,在陶瓷基板111与电路层112(铜板122)的接合界面形成有接合层130。

  如图6所示,该接合层130具备:形成在陶瓷基板111侧的由包含活性金属的化合物构成的活性金属化合物层131;和形成在活性金属化合物层131与电路层112(铜板122)之间的合金层132。

  而且,在本实施方式中,在活性金属化合物层131与陶瓷基板111之间形成有Si浓缩层135。

  在本实施方式中,如后述,使用Cu-P系钎料24与作为活性金属含有Ti的钛材料25而接合电路层112(铜板122)与陶瓷基板111,因此活性金属化合物层131由钛化合物而构成。

  另外,推测Si浓缩层135由在由氧化铝(Al2O3)构成的陶瓷基板111中作为烧结阻剂而含有的SiO2形成。

  并且,活性金属化合物层131为结晶质钛化合物(钛氧化物或钛氮化物)。另外,关于活性金属化合物层131的结晶性,能够通过透射型电子显微镜观察电子衍射图形来确认。在本实施方式中,活性金属化合物层131由钛氧化物构成,且观察到金红石型的电子衍射图形。

  在此,在本实施方式中,活性金属化合物层131的厚度优选被设定为1.5nm以上且150nm以下的范围内。

  并且,在接合层130中,从活性金属化合物层131的电路层112(铜板122)侧的界面朝向电路层112(铜板122)在0.5μm至3μm的厚度范围E内的Al浓度被设定为0.15at%以下。

  并且,合金层132含有包含在接合时所使用的钎料的成分中的任一种的合金或金属间化合物。在本实施方式中,使用Cu-P系钎料24,具体而言使用Cu-P-Sn-Ni钎料,因此合金层32具有含有Cu、P、Sn、Ni中的任一种的合金或金属间化合物。

  接着,参考图7及图8对上述本实施方式的绝缘电路基板110的制造方法进行说明。

  首先,如图8所示,在陶瓷基板111的一个表面(在图8中为上表面)依次层叠Cu-P系钎料24、钛材料25及成为电路层112的铜板122(铜板层叠工序S101)。

  另外,Cu-P系钎料24及钛材料25的厚度等被设定为与第一实施方式的条件相同。

  接着,在向层叠方向进行了加压(压力1~35kgf/cm2(0.1MPa~3.5MPa))的状态下,将陶瓷基板111、Cu-P系钎料24、钛材料25、铜板122装入真空加热炉内进行加热而接合(铜板接合工序S102)。

  在本实施方式中,真空加热炉内的压力被设定在10-6Pa以上且10-3Pa以下的范围内。

  并且,加热温度被设定在770℃以上且950℃以下的范围内,且将加热温度下的保持时间设定在5分钟以上且120分钟以下的范围内。而且,将600℃至700℃的升温速度设定在5℃/分钟以上且20℃/分钟以下的范围内。

  接着,如图8所示,在陶瓷基板111的另一个表面(在图8中为下表面)依次层叠Al-Si系钎料27及成为金属层113的铝板123(铝板层叠工序S103)。

  在此,在本实施方式中,作为Al-Si系钎料27而使用由以7质量%以上且12质量%以下的范围内含有Si的铝合金构成的钎料箔,且Al-Si系钎料27的厚度被设定在5μm以上且30μm以下的范围内。

  接着,在向层叠方向进行了加压(压力1~35kgf/cm2(0.1MPa~3.5MPa))的状态下,将陶瓷基板111、Al-Si系钎料27、铝板123装入真空加热炉内进行加热而接合(铝板接合工序S104)。

  在本实施方式中,真空加热炉内的压力被设定在10-6Pa以上且10-3Pa以下的范围内。

  并且,加热温度被设定在580℃以上且650℃以下的范围内,且将加热温度的保持时间设定在1分钟以上且180分钟以下的范围内。

  通过以上的铜板层叠工序S101、铜板接合工序S102、铝板层叠工序S103、铝板接合工序S104制造本实施方式的绝缘电路基板110。

  接着,在绝缘电路基板110的金属层113的另一个表面侧使用Al-Si系钎料而接合散热器51(散热器接合工序S105)。

  而且,在绝缘电路基板110的电路层112的一个表面通过焊接而接合半导体元件3(半导体元件接合工序S106)。

  通过以上的工序而制作出图5所示的功率模块101。

  根据如以上构成的本实施方式的绝缘电路基板110(接合体),在形成在陶瓷基板111与电路层112之间的接合层130的陶瓷基板111侧形成有由结晶质钛氧化物构成的活性金属化合物层131,因此即使为负载超声波的情况下,也能够抑制以活性金属化合物层131为起点产生龟裂的情况,并能够抑制陶瓷基板111与电路层112剥离。

  而且,在本实施方式中,将从活性金属化合物层131的电路层112侧的界面朝向电路层112在0.5μm至3μm的厚度范围E内的接合层130的Al浓度抑制在0.15at%以下,因此即使负载有超声波的情况下,也能够抑制在接合层130中产生龟裂。

  另外,厚度范围E内的接合层130的Al浓度优选为0.10at%以下,更优选为0.07at%以下。

  并且,在本实施方式中,活性金属化合物层131的厚度在1.5nm以上且150nm以下的范围内,因此能够抑制在冷热循环负载时在陶瓷基板11产生裂纹。

  另外,活性金属化合物层131的厚度的下限优选为3nm以上,更优选为5nm以上。另一方面,活性金属化合物层131的厚度的上限优选为60nm以下,更优选为15nm以下。

  并且,在本实施方式中,陶瓷基板111由氧化铝(Al2O3)构成,因此能够制作绝缘性及耐热性优异的绝缘电路基板110。

  而且,活性金属化合物层131由钛氧化物构成,因此陶瓷基板111与电路层112的接合性得到提高,从而能够进一步抑制陶瓷基板111与电路层112剥离。

  而且,在本实施方式中,在陶瓷基板111的与电路层112相反的一侧的表面形成有金属层113,因此能够以良好的效率对半导体元件3中产生的热进行散热。并且,能够抑制陶瓷基板111产生翘曲。

  并且,金属层113由铝或铝合金构成,因此能够通过金属层113而吸收热应力,并能够抑制在冷热循环时对陶瓷基板111的负载。

  以上,对本发明的实施方式进行了说明,但本发明并不限定于这些,在不脱离其发明的技术思想的范围内能够适当进行变更。

  例如,在本实施方式中,对作为在陶瓷基板的与电路层相反的一侧的表面形成金属层的结构进行了说明,但并不限定于此,也可以不设置金属层。

  并且,散热器并不限定于在本实施方式所例示的结构,且散热器的结构未无特别限定。

  并且,也可以在散热器与金属层之间设置由铝或铝合金或含有铝的复合材料(例如AlSiC等)构成的缓冲层。

  并且,在本实施方式中,对作为在绝缘电路基板搭载半导体元件而构成功率模块的结构进行了说明,但并不限定于此。例如,也可以在绝缘电路基板的电路层搭载LED元件而构成LED模块,也可以在绝缘电路基板的电路层搭载热电元件而构成热电模块。

  而且,在本实施方式中,对作为活性金属而使用Ti的情况进行了说明,但并不限定于此,也可以使用选自Ti、Nb、Hf、Zr中的一种或两种以上的活性金属。

  并且,作为在接合陶瓷基板与铜板时所使用的钎料,对Cu-P-Sn-Ni钎料进行了举例说明,但并不限定于此,也可以使用其他的钎料。

  而且,在本实施方式中,对合金层具有含有Cu、P、Sn、Ni中的任一种的合金或金属间化合物的情况进行了说明,但并限定于此,只要含有包含在接合时所使用的钎料的成分中的任一种的合金或者金属间化合物即可。例如,在钎料含有Zn的情况下,可以含有包含Zn的合金或金属间化合物。

  实施例

  <实施例1>

  在由表1中所记载的材质构成的陶瓷基板(26mm×26mm×0.635mm厚度)的一个表面使用表1中所记载的钎料及活性金属材料依次层叠由无氧铜构成的铜板(6mm×6mm×0.3mm厚度)来形成层叠体。

  并且,通过在以表2所示的荷载进行了加压的状态下将层叠体投入到真空加热炉,并通过加热将铜板接合到陶瓷基板的一个表面。加热温度及时间如表2所记载。

  如上所述,得到了本发明例、比较例的接合体。关于所得到的接合体,对“活性金属化合物层的材质及结晶性”、“接合层的区域E的Al浓度”、“超声波接合性”进行了评价。

  (活性金属化合物层的材质及结晶性)

  使用透射型电子显微镜(FEI公司制Titan ChemiSTEM、加速电压200kV),以倍率80000倍进行测定,通过能量分散型X射线分析法(Thermo Fisher Scientific Inc.制NSS7)得到了N、O及活性金属元素的元素映射。当活性金属元素与N或O存在于同一区域时,判断为具有活性金属化合物层。

  而且,当在活性金属化合物层的高分辨率像中观察到格纹,且在以高速傅立叶转换高分辨率像得到的衍射像中确认到衍射斑点时,判断为结晶质。

  将评价结果示于表2。

  (接合层的区域E的Al浓度)

  作为接合部中的Al浓度的测定方法,通过EPMA(电子束微分析仪、JEOL Ltd.制JXA-8530F)对接合部的截面进行分析,对从活性金属化合物区域的一表面至0.5μm以上且3μm以下的范围进行定量分析而测定了Al浓度。具体而言,对上述范围内的任意部位的10处进行分析,将其平均值设为Al浓度。

  将评价结果示于表2。

  并且,在图9中示出本发明例3的陶瓷基板与铜板的接合界面的透射电子显微镜观察。

  而且,在图10中示出本发明例3及比较例1的接合界面的线分析结果。

  并且,在图11中示出本发明例4的陶瓷基板与铜板的接合界面的元素映射。

  (超声波接合后的剥离的有无)

  对于所得到的接合体,使用超声波金属接合机(ULTRASONIC ENGINEERING CO.,LTD.制:60C-904),以崩塌量(コプラス量)0.3mm的条件超声波接合了铜端子(10mm×5mm×1mm厚度)。

  在接合后,将产生了铜板与陶瓷基板的接合界面的剥离的情况评价为“××”。并且,关于未确认到剥离的情况,进而使用超声波探伤装置(株式会社HITACHISOLUTIONS制FineSAT200)检查铜板与陶瓷基板的接合界面,将观察到剥离或陶瓷裂纹的情况评价为“×”,将均未确认到的情况评价为“○”。将评价结果示于表2。

  [表1]

  

  [表2]

  

  在活性金属化合物层为非晶质的比较例1、2中,超声波接合后在铜板与陶瓷基板的接合界面产生了剥离。

  在接合部的区域E的Al浓度大于0.15at%的比较例3、4中,超声波接合后在铜板与陶瓷基板的接合界面未确认到剥离,但通过超声波探伤装置进行了检查的结果,确认到剥离或陶瓷裂纹。

  相对于此,在将活性金属化合物层设为结晶质,并且将接合部的区域E的Al浓度设为0.15st%以下的本发明例1-9中,在超声波接合后,未确认到铜板与陶瓷基板的接合界面的剥离,通过超声波探伤装置进行了检查的结果,也未确认到剥离或陶瓷裂纹。

  并且,参考图9时,在本发明例3中,确认到在陶瓷基板的界面部分形成有结晶质活性金属化合物层(金红石型的Ti-O层)。

  而且,参考图10时,在本发明例3中,与比较例1相比,确认到在陶瓷基板的界面部分的活性金属浓度(Ti浓度)变高。

  并且,参考图11时,在本发明例4中,确认到在由氧化铝构成的陶瓷基板与结晶质的活性金属化合物层之间形成有Si浓缩层。

  从以上的情况确认到,根据本发明例能够提供一种即使进行了超声波接合的情况下,也能够抑制陶瓷部件与铜部件剥离的接合体及绝缘电路基板。

  <实施例2>

  在由表3中所记载的材质构成的陶瓷基板(40mm×40mm×0.635mm厚度)的两表面使用表3中所记载的钎料及活性金属材料依次层叠由无氧铜构成的铜板(37mm×37mm×0.3mm厚度)而形成层叠体。

  而且,通过在以表4所示的荷载进行了加压的状态下将层叠体投入到真空加热炉进行加热而在陶瓷基板的两表面分别接合了铜板。加热温度及时间如表4所记载。

  如上所述得到了本发明例的接合体。关于所得到的接合体,对“活性金属化合物层的材质及结晶性”、“接合层的区域E的Al浓度”、“活性金属化合物层的厚度”、“冷热循环可靠性”进行了评价。另外,对于“活性金属化合物层的材质及结晶性”、“接合层的区域E的Al浓度”,也与实施例1同样地进行了评价。

  (活性金属化合物层的厚度)

  使用透射型电子显微镜(FEI公司制Titan ChemiSTEM、加速电压200kV),以倍率80000倍进行测定,通过能量分散型X射线分析法(Thermo Fisher Scientific Inc.制NSS7)而得到了N、O及活性金属元素的元素映射。当活性金属元素与N或O存在于同一区域时,判断为具有活性金属化合物层。

  在5个视场中进行观察,将活性金属元素与N或O存在于同一区域的范围的面积除以所测定的宽度而得的平均值设为“活性金属化合物层的厚度”。

  (冷热循环可靠性)

  使用冷热冲击试验机(ESPEC CORP.制TSA-72ES),以气相将-50℃×10分钟←→175℃×10分钟的冷热循环实施了250次循环。

  每10次循环,通过超声波探伤装置(股份有限公司HITACHISOLUTIONS制FineSAT200)的界面检查对陶瓷基板的裂纹的有无进行了判定。

  [表3]

  

  [表4]

  

  在活性金属化合物层的厚度被设定在1.5nm以上且150nm以下的范围内的本发明例11-19中,产生有陶瓷裂纹的冷热循环为160次以上,确认到冷热循环可靠性优异。尤其,在活性金属化合物层的厚度被设定在1.5nm以上且15nm以下的范围内的本发明例11、17、18、19中,在将冷热循环进行250次循环负载后也未确认到陶瓷基板的裂纹,确认到冷热循环可靠性尤其优异。

  从以上的情况考虑,当进一步需要冷热循环可靠性时,优选将活性金属化合物层的厚度设定在1.5nm以上且150nm以下的范围内,更优选设定在1.5nm以上且15nm以下的范围内。

  产业上的可利用性

  根据本发明,能够提供一种即使在进行了超声波接合的情况下,也能够抑制陶瓷部件与铜部件剥离的接合体及绝缘电路基板。

  符号说明

  1、101-功率模块,3-半导体元件(电子零件),10、110-绝缘电路基板(接合体),11、111-陶瓷基板(陶瓷部件),12,112-电路层,13、113-金属层,22、23、122-铜板(铜部件),30、130-接合层,31、131-活性金属化合物层。

《接合体及绝缘电路基板.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)