欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 晶体生长> III族氮化物半导体及其制造方法独创技术18897字

III族氮化物半导体及其制造方法

2022-12-10 14:49:32

III族氮化物半导体及其制造方法

  技术领域

  本发明涉及III族氮化物半导体及其制造方法。

  背景技术

  已公开了以下方法,即,通过使用与III族氮化物半导体不同的异质基板来使III族氮化物半导体选择性生长后,形成该III族氮化物半导体的纳米线,并在该纳米线上进一步使III族氮化物半导体晶体生长,来减少III族氮化物半导体中的穿透位错缺陷(以下,也称作“位错”)的方法(非专利文献1)。

  例如,如图4所示那样在蓝宝石基板401上,通过有机金属气相生长法(MetalOrganic Chemical Vapor Deposition:以下也称作“MOCVD法”)使数μm厚的薄膜n型GaN层402晶体生长。接着通过氢化物气相生长法(Hydride Vapor Phase Epitaxy:以下,也称作“HVPE法”)使30μm厚左右的厚膜n型GaN层403晶体生长。之后,使用KOH:K2S2O8电解液,一边对厚膜n型GaN层表面用紫外线灯照射紫外光一边进行湿式蚀刻(Photo-electro-chemicaletching法:以下,也称作“PEC法”)。

  若进行上述PEC法,则能将由于蓝宝石基板401与薄膜n型GaN层402或厚膜n型GaN层403之间的晶格失配或热膨胀失配而产生的位错的周边部分选择性地蚀刻除去。而且,位错较少的区域未被蚀刻而残留为线状,形成n型GaN纳米线层404。在该n型GaN纳米线层404中,在距蓝宝石基板401与薄膜n型GaN层402之间的边界面为数十μm左右的区域406,应力大致为0。接下来,若在n型GaN纳米线层404上通过HVPE法形成厚膜GaN层405,则由于GaN层是从应力较小且位错较少的n型GaN纳米线层404的顶部生长,因此能够形成位错较少的厚膜GaN层405。

  非专利文献1:Crystal Engineering Communication(2011年)第13号5929~5935页

  发明内容

  然而,若如上述的非专利文献那样在蓝宝石基板上使用PEC法形成n型GaN的纳米线,则存在蚀刻深度不一致,纳米线的高度不均匀的问题。而且,若纳米线的高度不均匀,则在其之上形成的GaN层容易产生位错密度的分布或产生较大的穿透凹陷(pit)。特别地,在制作大口径的GaN晶体时,上述情况容易成为问题。

  本发明解决上述以往的问题,其目的在于,提供缺陷密度较小的高品质且大口径的III族氮化物半导体及其制造方法。

  为了实现上述目的,本发明中构成一种III族氮化物半导体,其具有:包含由通式RAMO4所表示的单晶体(通式中,R表示从由Sc、In、Y、以及镧系元素构成的组中选择的一个或多个三价元素,A表示从由Fe(III)、Ga、以及Al构成的组中选择的一个或多个三价元素,M表示从由Mg、Mn、Fe(II)、Co、Cu、Zn、以及Cd构成的组中选择的一个或多个二价元素)的RAMO4基板;配置于所述RAMO4基板上的p型III族氮化物晶体层;配置于所述p型III族氮化物晶体层上,且彼此分离的多个n型III族氮化物晶体层;以及配置于所述多个n型III族氮化物晶体层上的III族氮化物晶体层。

  根据本发明,能够提供高品质且大口径的III族氮化物半导体。

  附图说明

  图1是本发明的实施方式的III族氮化物半导体的剖面示意图。

  图2的(a)~(g)是本发明的实施方式的III族氮化物半导体的制造工序剖面图。

  图3是表示本发明的实施方式的III族氮化物半导体的原子浓度分布的图。

  图4是通过以往的方法制作的III族氮化物半导体的剖面图。

  附图标记说明

  101 RAMO4(ScAlMgO4)基板

  102 p型III族氮化物晶体层

  103 n型III族氮化物晶体层

  104 III族氮化物晶体层

  201 RAMO4(ScAlMgO4)基板

  202 p型GaN层

  203 n型GaN层

  204 n型GaN纳米线层

  205 GaN层

  206 劈开位置

  具体实施方式

  下面参照附图,对本发明的实施方式进行说明。

  (实施方式)

  在图1中示出本发明的实施方式的III族氮化物半导体的剖面示意图。该III族氮化物半导体具有:包含由通式RAMO4所表示的单晶体(通式中,R表示从由Sc、In、Y、以及镧系元素构成的组中选择的一个或多个三价元素,A表示从由Fe(III)、Ga、以及Al构成的组中选择的一个或多个三价元素,M表示从由Mg、Mn、Fe(II)、Co、Cu、Zn、以及Cd构成的组中选择的一个或多个二价元素,O表示氧)的RAMO4基板101;配置于该RAMO4基板101上的p型III族氮化物晶体层102;配置于该p型III族氮化物晶体层102上,且彼此分离的多个n型III族氮化物晶体层103;以及配置于多个n型III族氮化物晶体层103上的III族氮化物晶体层104。利用该III族氮化物半导体,能够实现缺陷密度较低的高品质的III族氮化物半导体。

  接着,在图2的(a)~图2的(g)中示出本发明的III族氮化物半导体的工序剖面图。首先,如图2的(a)所示,准备用于使III族氮化物半导体晶体生长的RAMO4基板201。该RAMO4基板201包含由通式RAMO4所表示的化合物的大致单一结晶。大致单一结晶材料是指如下的结晶质固体,即,包含90原子%以上的构成外延生长面的RAMO4,且关于任意的晶轴,在外延生长面的任意部分,该晶轴的朝向都相同。但是,将晶轴的朝向有局部性的改变的结晶、以及包含局部性的晶格缺陷的结晶,也视为单晶。在由通式RAMO4表示的化合物之中,优选R为Sc,A为Al,M为Mg。另外,关于构成在该RAMO4基板上生长的III族氮化物的III族元素金属,特别优选为镓(Ga),但也可以是例如铝(Al)、铟(In)、铊(Tl)等。以下,以R为Sc、A为Al、M为Mg的情况,即RAMO4基板201为ScAlMgO4单晶基板的情况为例进行说明。另外,以III族氮化物晶体为GaN的情况为例进行说明。但是,本实施方式不限于这些。

  如图2的(b)所示,在ScAlMgO4基板201上,通过MOCVD法形成膜厚例如为2.7μm的p型GaN层202。接下来,层叠掺杂了Si的膜厚例如为3.3μm的n型GaN层203。在基于后述的PEC法的蚀刻中,n型GaN层203中的没有缺陷的平坦的区域也会被除去一部分。因此,优选将n型GaN层203形成为比p型GaN层202厚。

  可以以如下方式进行MOCVD晶体生长(p型GaN层202及n型GaN层203的形成)。首先,将上述的ScAlMgO4基板201在常压的氢与氮的混合环境中,进行热退火10分钟。之后,在同环境中降温至500℃。接着,在该环境中加入氨(NH3)之后,供给作为Ga原料的三甲基镓(TMGa),来使膜厚例如为30nm的GaN低温缓冲层(未图示)生长。接着,在氨、氢、以及氮载气中升温(在此期间生长中断)达到1125℃之后,使p型GaN层202及n型GaN层203依次生长。

  在此,对p型GaN层202的形成方法进行说明。在本实施方式中,在形成p型GaN层202时的MOCVD生长中,不进行有意的掺杂。以氢及氮载气供给作为Ga原料的TMGa和NH3,在常压环境下使之气相生长。在该气相生长中,Mg原子从ScAlMgO4基板201热扩散,固相扩散至p型GaN层202。因此,等同于将Mg原子作为p型掺杂剂掺杂。

  在此,p型GaN层202中的Mg原子浓度如图3的原子浓度分布所示那样,在与ScAlMgO4基板201之间的边界面处最多,为约1×1021cm-3,随着远离该边界面而逐渐减少至1×1018cm-3左右。能通过二次离子质谱法(Secondary ION Mass Spectrometry:SIMS)来得到该原子浓度分布。

  此外,也可以在MOCVD气相生长时(形成p型GaN层202时)供给Mg原料来进行掺杂。但在该情况下,产生掺杂迟缓,难以对边界面附近数μm的薄膜以高浓度进行急剧的掺杂。并且,若在与GaN不同的异质基板(ScAlMgO4基板201)附近,在MOCVD气相生长时掺杂高浓度的Mg,则无法进行位错的聚集等结晶性改善,只能得到低品质的p型GaN层202。因此,即使在该p型GaN层202上形成纳米线,有时也难以形成高品质的纳米线,进而无法在其之上形成高品质的GaN层205。因此,如上所述,从ScAlMgO4基板201使Mg固相扩散的方法,对于在与异质基板之间的边界面处形成高品质的p型GaN层202来说,是极有效的。

  另一方面,在n型GaN层203的生长中,供给二氯甲硅烷(SiH2Cl2)气体作为掺杂剂原料。优选n型GaN层203中的Si原子浓度为1×1018cm-3以上5×1018cm-3以下。这是因为,若Si浓度增加至超过该范围,则引起形态粗糙等结晶性的降低。另外,若低于1×1018cm-3,则n型GaN层203不能通过从固相扩散的Mg供给的空穴载流子而示出n型传导。

  一般地,GaN中的Mg的受主杂质能级较深,活化率(空穴浓度/Mg原子浓度)约为10%。如图3所示,在n型GaN层203与p型GaN层202之间的边界区域,Mg原子浓度约为1×1018cm-3,空穴浓度约为1×1017cm-3。也就是说,空穴浓度比Si浓度即约1×1018cm-3,低1位数左右。因此,n型GaN层203示出n型传导。此外,GaN中的Si原子的施主杂质能级较浅,可认为活化率是大致100%(Si原子浓度=电子载流子浓度)。

  对于上述p型GaN层202及n型GaN层203的传导性,只要对Mg原子浓度及Si原子浓度分别进行SIMS测定就能够判别,但例如也可以通过扫描电容显微镜法(ScanningCapacitance Microscope:SCM法)来直接观察试样的剖面。

  接着,使用PEC法来对n型GaN层203进行蚀刻。具体而言,对于n型GaN层203,使用KOH:K2S2O8电解液,一边对n型GaN层表面用紫外线灯照射紫外光一边进行湿式蚀刻。其结果,如图2的(d)所示,n型GaN层203内的位错周边部优先地被蚀刻,位错较少的优质的部分成为线状的彼此分离的多个n型GaN纳米线层204而残留。构成n型GaN纳米线层204的各个线的直径在此为数百μm左右,其高度约为2μm。PEC法中使用的蚀刻液和紫外线照射用的灯可以设为与公知的蚀刻液和灯相同。作为蚀刻液,可以使用0.5M浓度的KOH与0.1M浓度的K2S2O8的混合液,作为紫外线照射用的灯,可以使用Xe灯。

  如本实施方式那样,使用在p型GaN层202上层叠n型GaN层203而成的结构,由此,通过基于PEC法的蚀刻,仅将n型GaN层203内的位错周边部除去,且蚀刻在n型GaN层203与p型GaN层202之间的边界面停止。已知在基于PEC法的GaN的蚀刻中,通过利用Xe灯的紫外光照射而光激发出的电子/空穴对中的空穴聚集于GaN的表面,GaN被蚀刻而熔化。在GaN为n型传导的情况下,由于晶体表面的带隙的弯曲,光激发出的电子/空穴对中的空穴能够向表面侧移动。然而,在p型的情况下无法进行这样的移动,无论怎么照射紫外光都不被蚀刻。

  因此,如本实施方式那样,通过在ScAlMgO4基板201侧形成高品质的p型GaN层202,能够精度良好且均匀地在n型GaN层203与p型GaN层202之间的边界面使基于PEC法的蚀刻停止。因此,能够形成高度均匀的彼此分离的多个n型GaN纳米线层204。

  如上所述,在以往的方法中,若通过PEC法进行蚀刻,则纳米线的高度易于产生偏差。而且,这样的纳米线的高度的偏差会使在其之上形成的GaN层的位错密度产生分布等。另外,有时还由于局部性的应力分布所引起的生长异状等而产生较大的穿透凹陷,特别是在制作2英寸~6英寸直径那样的大口径且优质的GaN自支撑基板的情况下会成为问题。相对于此,如本实施方式那样,通过使n型GaN纳米线层204的高度一致,能够解决该问题。

  在形成多个n型GaN纳米线层204后,在该n型GaN纳米线层204上通过MOCVD法或HVPE法,使GaN层205晶体生长。在生长初期,GaN仅在各n型GaN纳米线层204的顶部生长(图2的(e)),但继续生长后,它们横向生长并结合,如图2的(f)所示,形成一体的GaN层205。此外,在GaN层205中,可以从初期就开始掺杂Si,也可以从中途开始掺杂Si。

  在使GaN层205晶体生长时,在要得到数μm厚左右的薄膜的模板的情况下主要使用MOCVD法,在使GaN层205较厚地生长至数百μm~数mm厚左右而使其自支撑的情况下,仅使用HVPE法,或使用MOCVD法和HVPE法的组合等方法。在将GaN层205设为厚膜而使其自支撑的情况下,能够利用ScAlMgO4基板201的劈开特性。即,在HVPE气相生长的冷却时,利用在ScAlMgO4与GaN之间产生的热应力,在ScAlMgO4基板201之中(距与p型GaN层202之间的边界面极近的区域(劈开位置206))劈开(图2的(f))。而且,当在器件制作的用途中制作自支撑基板的情况下,对图2(g)所示的层叠体的表面及背面进行研削、抛光,加工成外延生长用基板。在GaN层205较厚,为数mm的情况下,能够进行切片来制作多个GaN自支撑基板。

  在此,以本实施方式中说明的方法实际地制作了III族氮化物半导体,所得到的GaN层205的位错密度在MOCVD生长而得到的薄膜(约5μm厚)中平均为5×106cm-2~10×106cm-2左右,在进一步在其之上HVPE生长而得到的厚膜(1mm厚以上)中能够降低至平均为5×105cm-2~10×105cm-2左右。这时,将ScAlMgO4基板201的口径设为了2英寸,但在4英寸~6英寸的口径的情况下都能得到相同的效果。

  此外,n型GaN层203的表面的位错密度为3×107cm-2~10×107cm-2左右。该值与通常使用的蓝宝石基板上的GaN的位错密度相比,低至相同膜厚下的1/5~1/10左右。位错密度的测定是通过计算阴极发光法(Cathode Luminescence法:CL法)的暗点密度来进行的。

  此外,在本实施方式中,在ScAlMgO4基板201上,利用Mg的固相扩散来制作p型GaN层202的效果还有一个。若在GaN晶体中混入上述程度的Mg原子,则其晶格常数变大。ScAlMgO4基板的与GaN晶体的晶格失配虽然与一般使用的蓝宝石基板相比较小,但ScAlMgO4基板的晶格常数比GaN晶体大1.8%左右。因此,通过如本实施方式那样使1×1021cm-3左右的高浓度的Mg不降低晶体品质地固相扩散至p型GaN层202的ScAlMgO4基板201侧的边界面,从而能够增大GaN的晶格常数,以使其接近ScAlMgO4基板的晶格常数。其结果,减少p型GaN层202和n型GaN层203的畸变,得到均匀性更高的高品质的纳米线。

  在上述的以往技术中记载的在蓝宝石基板上形成GaN纳米线的方法中,为了使GaN纳米线的应力降低,在蓝宝石基板上以MOCVD法形成了初期的n型GaN层之后,以比MOCVD生长的生长率快1位数~2位数的HVPE法,形成20μm~30μm左右的厚膜n型GaN层,以PEC法进行蚀刻来形成纳米线。即,需要进行两次方式不同的气相生长法。相对于此,在本实施方式中,由于在ScAlMgO4基板上形成了p型GaN层,因此能够使基于PEC法的蚀刻停止。也就是说,即使p型GaN层和n型GaN层是薄膜GaN层,也能充分地进行基于PEC法的蚀刻的控制。并且能够利用GaN与ScAlMgO4基板之间的热应力,将ScAlMgO4基板的一部分除去,能够使GaN层205自支撑。并且,能够仅通过一次的MOCVD生长来形成n型GaN纳米线层204,因此能够大幅提高生产效率。

  在本实施方式中,作为GaN晶体的厚膜生长法公开了HVPE法,但氧气气相外延法(Oxide Vapor Phase Epitaxy:OVPE法)也能得到相同的效果。

  另外,叙述了p型GaN层202包含作为ScAlMgO4基板201的构成元素的Mg的情况,但在将晶种基板设为其他种类的RAMO4基板的情况下,优选最终得到的III族氮化物半导体的p型III族氮化物晶体层102包含通式RAMO4中的元素M,也就是说包含Mg、Mn、Fe(II)、Co、Cu、Zn或Cd,特别优选包含Mg或Zn。由此,能够抑制多个n型III族氮化物晶体层103的高度的偏差。

  在此,优选p型III族氮化物晶体层102中的所述通式中M所表示的原子的浓度,在RAMO4基板101侧比在n型III族氮化物晶体层103侧高。特别是在从RAMO4基板101与p型III族氮化物晶体层102之间的边界面至厚度约100nm为止的区域中,在边界面处产生的位错较多。而且,若进行基于PEC法的蚀刻直至位错较多的部分,则纳米线(多个n型III族氮化物晶体层103)的根部变细,或消失等,无法形成均匀的纳米线。因此,优选在该位错较多的边界面附近添加较多的M原子来p型化,调整传导性以使其不被蚀刻。

  此外,在上述的说明中,以p型III族氮化物晶体层比n型III族氮化物晶体层薄的情况为例进行了说明。但是,也可以是p型III族氮化物晶体层比n型III族氮化物晶体层厚的情况。

  另外,在上述的方法中,为了使作为晶种基板的RAMO4基板101的构成元素M,从该RAMO4基板101充分地扩散至p型III族氮化物晶体层102中,只要进行上述的MOCVD法即可。更详细地,能够通过在950℃以上且1150℃以下的温度、(0.1气压以上且1.6气压以下的压力条件)下实施MOCVD法,来使RAMO4基板101的构成元素M热扩散至p型III氮化物晶体层102中。

  另外,在作为n型III族氮化物品体层103的一例的n型GaN纳米线层204中,以Si作为掺杂剂进行了说明,但也可以是其他n型掺杂剂。例如,可列举Ge、O等。

  另外,在上述的说明中,对在ScAlMgO4基板上形成GaN纳米线等的情况进行了说明,但也能够使用MOCVD法,同样地使例如AlN层的其他III族氮化物生长,来形成AlN纳米线或AlxGa1-xN(0≤x≤1)纳米线等。在使用了这样的纳米线的情况下,也能够实现在其之上形成的GaN层或AlyGa1-yN层(0≤y≤1)等的III族氮化物晶体的缺陷减少等。即,能够同样地得到高品质的III族氮化物晶体。在形成AlN纳米线的情况下,优选使用能够照射波长比AlN的带隙(波长:约200nm)短的光的低压水银灯等作为光源。另外,关于PEC法中使用的蚀刻液,能够与GaN的情况同样地使用KOH与K2S2O8的混合液,根据紫外光强度来适当调整浓度或蚀刻时间。

  工业实用性

  本发明能够利用于如下的高品质GaN基板:照明及汽车用前灯等中使用的白色LED及半导体激光二极管或电动汽车中使用的高频、高输出用途的功率晶体管等的晶体生长用高品质GaN基板。

《III族氮化物半导体及其制造方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)