欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种具有高度支化结构和低模量高弹性的拓扑弹性体的制备方法独创技术20606字

一种具有高度支化结构和低模量高弹性的拓扑弹性体的制备方法

2021-02-05 04:40:04

一种具有高度支化结构和低模量高弹性的拓扑弹性体的制备方法

  技术领域

  本发明涉及具有高度支化结构的拓扑弹性体的制造和应用领域,尤其涉及一种具有高度支化结构和低模量高弹性的拓扑弹性体的制备方法。

  背景技术

  同时具有低模量和高弹性的弹性体在生物医用材料、智能机器人、航空航天等领域中有着重要的应用前景。想要同时获得低模量和高弹性的材料比较困难,降低弹性体的模量可以通过降低体系的交联密度和减少体系的物理缠结来实现,但是当交联密度和分子链缠结降低到一定程度时,材料易发生蠕变,弹性下降。因此,聚合物材料的低模量和高弹性存在内在的矛盾。最常见的具有低模量和高弹性的材料是聚合物凝胶,但是凝胶中含有的大量溶剂会带来许多负面影响,例如相分离、溶剂挥发、渗漏等。为了实现无溶剂状态下低模量和高弹性的性质,Sheiko等人合成了高度支化的瓶刷状和梳状弹性体(国际专利,国际出版号:WO 2017/015614 A),但是这类材料的合成路线复杂且适用的化学种类有限。相较而言,具有高度支化结构的聚合物结构多样,单体选择多样,合成方法多样,因此,本专利提出了具有高度支化结构的低模量高弹性的拓扑弹性体。

  众所周知,聚合物网络的拓扑结构会影响弹性体的性能,例如:拓扑缺陷会极大影响材料的力学性能。拓扑弹性体是指具有特定拓扑结构并在材料性能中起主导/决定作用的弹性体。树状支化大分子不同与传统的线型、支化、交联聚合物,它们带有大量末端官能团,分子链间无缠结,且具有低粘度、高溶解度和较高的反应活性等优势,因此,作为添加剂广泛应用于材料表面改性、聚合物分离膜、生物载药等领域。这些应用主要集中于非交联的大分子,虽然目前有部分研究关注交联的树状支化分子(例如:中国专利,公开号:CN107674158A;中国专利,公开号:CN A),但是这些研究主要关注具有超支化结构的交联凝胶材料或者交联超支化分子作为聚合物添加剂用于膜材料等,关于具有高度支化结构的弹性体的研究仍然十分有限。Kennedy等人利用物理交联的方法制备了含超支化结构的本体材料(美国专利,公开号:US 2019/0092938 A1)。他们合成了基于嵌段共聚物-超支化苯乙烯嵌段共聚物的热塑性弹性体,虽然这类材料具有较高的弹性,但是这类热塑性弹性体的性能受限于聚苯乙烯的刚性分子链,因此难以制备出低模量的弹性体。

  发明内容

  本发明的目的在于提供一种具有高度支化结构和低模量高弹性的拓扑弹性体的制备方法,制备的拓扑弹性体在保持高弹性的前提下可实现低模量。

  本发明提供如下技术方案:

  一种具有高度支化结构和低模量高弹性的拓扑弹性体的制备方法,所述拓扑弹性体含有树状支化大分子,所述制备方法为:直接交联法,将多种单体混合后在一起反应,交联反应和形成高度支化结构的反应同时进行,直接获得拓扑弹性体;或后交联法,先合成具有高度支化结构的树状支化大分子,然后利用交联剂将树状支化大分子交联后获得拓扑弹性体;或接枝法,将未反应的单体或树状支化大分子接枝至聚合物网络之中形成拓扑弹性体;或共聚法,将未反应的单体或树状支化大分子和高分子网络共聚形成一个网络或双网络/互穿网络的弹性体。

  需要指出的是,树状支化大分子包括且不限于下述结构式,分别是:树枝状聚合物、超支化聚合物、树形接枝聚合物、线型-树状聚合物和树状嵌段聚合物。其中树枝状聚合物和超支化聚合物是最常见的两种。树枝状聚合物结构完美对称,末端官能团分布均匀。超支化聚合物分子不对称,支化结构随机分布,支化度不均一,分子量具有多分散性。

  

  作为优选,树状支化大分子的端官能团可以选自氨基、羟基、烯丙基、乙烯基、(甲基)丙烯酸酯基、巯基、环氧基、羧基、酸酐、硅氢键、烷氧基、异氰酸酯基等。

  对于本发明中的直接交联法:

  所述直接交联法是指将所有单体混合在一起反应,交联反应和形成高度支化结构的反应同时进行,直接获得拓扑弹性体。需要指出的是,由于交联与超支化结构的形成同时发生,因此交联反应和形成高度支化结构的反应需要是两个互相不干扰的正交反应。

  作为优选,交联反应和形成高度支化结构的反应分别选择以下反应中两个互相不干扰的正交反应,包括但不限于:如自由基聚合、阳离子聚合、阴离子聚合、配位聚合和官能团反应。

  进一步优选,选用自由基聚合、阳离子聚合、阴离子聚合均需要在网络中加入0.01wt%-5wt%的引发剂。例如:自由基聚合需要加入光引发剂或者热引发剂,并在紫外光照射10s-10min或加热到80-120℃下聚合。引发剂包括:光引发剂819、光引发剂2959、过氧化二苯甲酰、偶氮二异丁腈等。

  作为优选,官能团反应包括巯基/氨基-双键的迈克尔加成反应、氨基/羧基/酸酐-环氧反应、氨基/羟基-异氰酸酯反应、硅氢加成反应、酯化反应等。

  进一步优选,巯基/氨基-双键的迈克尔加成反应需要在体系中加入0.01wt%-5wt%的碱催化剂,并加热到60-120℃下聚合。碱催化剂包括:三乙胺、1,5,7-三叠氮双环(4.4.0)癸-5-烯、1,8-二氮杂二环十一碳-7-烯等。

  进一步优选,高度支化结构可由羟基与异氰酸酯反应得到(反应式Ⅰ),交联网络可由(甲基)丙烯酸酯的自由基聚合反应得到(反应式Ⅱ)。

  

  在本发明的后交联法中:

  所述后交联法是指先合成具有高度支化结构的树状支化大分子,然后利用交联剂将树状支化大分子交联后获得拓扑弹性体。包括以下两个步骤:

  (1)利用常规方法制备具有高度支化结构的树状支化大分子;

  (2)利用交联剂将树状支化大分子交联起来形成弹性体。

  根据交联剂的选择将后交联法分为以下三类:使用其它小分子/大分子作为交联剂与树状支化大分子交联形成弹性体;将树状支化大分子本身作为交联剂,利用树状支化大分子自聚形成弹性体;与先合成的树状支化大分子带有不同端官能团的树状支化大分子作为交联剂通过官能团反应交联形成弹性体。

  作为优选,其它小分子/大分子交联剂与树状支化大分子的官能团反应包括但不限于:巯基/氨基-双键的迈克尔加成反应、氨基/羧基/酸酐-环氧反应、氨基/羟基-异氰酸酯反应、硅氢加成反应、酯化反应等。

  进一步优选,上述拓扑弹性体由含乙烯基、环氧基、硅双键的树状支化大分子分别和含巯基/氨基、氨基、硅氢基团的小分子/大分子交联剂反应得到(反应式Ⅲ)。

  进一步优选,硅双键和硅氢基团反应时需要在体系中加入0.01wt%-5wt%的铂基催化剂,并加热到60-120℃下聚合。

  作为优选,树状支化大分子的自聚方法包括但不限于:自由基自聚、阳离子自聚、阴离子自聚、配位聚合。

  进一步优选,上述拓扑弹性体可由末端官能团为(甲基)丙烯酸酯基的树状支化大分子通过自由基反应而得到(反应式Ⅳ)。

  

  

  作为优选,含不同端官能团的树状支化大分子的官能团反应包括但不限于:巯基/氨基-双键的迈克尔加成反应、氨基/羧基/酸酐-环氧反应、氨基/羟基-异氰酸酯反应、硅氢加成反应、酯化反应等。

  进一步优选,上述拓扑弹性体可由末端官能团分别为氨基和丙烯酸酯基、巯基和丙烯酸酯基、氨基和环氧基的树状支化大分子反应得到(反应式Ⅴ)。

  

  在本发明的接枝法中:

  接枝法是指将未反应的单体或树状支化大分子接枝至聚合物网络之中形成拓扑弹性体。其中包括以下两种:未反应的单体接枝至聚合物网络,在接枝的同时形成树状支化大分子,最后获得拓扑弹性体;利用树状支化大分子的低粘度、高溶解度的特性,将其接枝至聚合物网络之中形成拓扑弹性体。

  作为优选,所述接枝和聚合反应包括上述提及的所有反应。所述高分子网络包括但不限于:环氧树脂网络、聚氨酯网络、硅橡胶网络、聚酯网络、聚丙烯酸酯网络等。

  进一步优选,选用聚氨酯网络聚合时需要在体系中加入0.01wt%-5wt%的催化剂,并加热到60-120℃下聚合。催化剂包括:辛酸亚锡、二月桂酸二丁基锡、三乙胺等。

  本发明的共聚法中,所述共聚法是指将未反应的单体或树状支化大分子和高分子网络共聚形成一个网络或双网络/互穿网络的弹性体。其中包括以下两种:将未反应的单体与高分子网络共聚,在共聚的同时形成树状支化大分子,最后成为拓扑弹性体;将树状支化大分子和高分子网络共聚形成拓扑弹性体。

  作为优选,将树状支化大分子和高分子网络共聚可以形成双网络或互穿网络;将树状支化大分子与高分子网络分步共聚,可以形成嵌段式网络。

  作为优选,所述聚合反应和高分子网络包括上述提及的所有化学反应和高分子网络。

  本发明制备的拓扑弹性体在保持高弹性的前提下可实现低模量。

  在本专利中,具有高度支化结构的拓扑弹性体是指一类由化学交联的树状支化大分子形成的弹性体。

  所述与现有技术相比,本发明的有益效果为:

  (1)本发明将树状支化大分子通过化学交联的方法交联起来得到的具有高度支化结构的拓扑弹性体,不仅具有低模量还具有高弹性,可以拓展弹性体的领域;

  (2)本发明涉及到的拓扑弹性体种类繁多,且材料选择、聚合方法多样化,在保证制备效率的同时,使得操作更加简单。对设备要求低,有望广泛应用于新兴领域;

  (3)本发明制备的拓扑弹性体还可能具有一些新的特性。由于体系中链缠结少,还具有快回弹、回弹滞后损耗低等性能;由于体系中含有大量未反应的活性官能团,还有具有高黏附、超高/超低表面能、超疏水/亲水等性能。

  附图说明

  图1为一种典型的拓扑弹性体的网络结构示意图。

  图2为直接交联法的反应示意图。

  图3为后交联法的反应示意图。

  图4为接枝法的反应示意图。

  图5为共聚法的反应示意图。

  具体实施方式

  下面将结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。

  本发明提供的具有高度支化结构和低模量高弹性的拓扑弹性体的一种典型的网络结构示意图如图1所示。本发明提供的制备方法可以为直接交联法、后交联法、接枝法或共聚法,其中,直接交联法的反应示意图如图2所示;后交联法中的分别以小分子/大分子、树状支化大分子本身、带有不同端官能团的树状支化大分子作为交联剂的反应示意图如图3所示;接枝法的反应示意图如图4所示;共聚法中形成双网络或互穿网络、形成嵌段式网络的反应示意图如图5所示。

  实施例1(直接交联法制备拓扑弹性体)

  实施例1的原料及来源如表1所示:

  表1实施例1原料及来源

  

  

  拓扑弹性体的制备:

  按照PCL、季戊四醇三丙烯酸酯和HDI为1:0.5:1(摩尔比)的比例称取样品,溶解在适量的乙酸丁酯中。搅拌均匀之后依次加入0.5wt%的DBTDL和1wt%的AIBN,并将混合液倒入模具中,在70℃加热下反应3h。在真空烘箱中抽干溶剂后,可以得到交联的拓扑弹性体。

  利用万能材料试验机可以测试材料的力学性能。从拉伸曲线中可以计算得到材料的模量、断裂伸长率和弹性回复性能。获得的拓扑弹性体的模量为150kPa,断裂伸长率为800%,弹性回复90%。通过投入单体的比例利用公式计算材料支化度,支化度=(Σ支化单元+Σ未端单元)/Σ重复单元。支化度为60%。

  实施例2(后交联法,树状支化大分子自聚形成拓扑弹性体)

  实施例2的原料及来源如表2所示:

  表2实施例2原料及来源

  

  端基为甲基丙烯酸酯基的树状支化大分子的制备:

  1.按照三烯丙基胺和丙烯酸烯丙酯为1:6(摩尔比)的比例称取样品,搅拌均匀之后加入5wt%的三乙胺催化并反应1h;

  2.然后,加入与丙烯酸烯丙酯相同摩尔量的β-巯基乙胺,1wt%的光引发剂,在365nm的紫外光照射下,40℃加热下,β-巯基乙胺边反应边溶解;

  3.待β-巯基乙胺完全反应之后,加入2倍于步骤1中加入的丙烯酸烯丙酯,之后重复步骤1;

  4.加入2倍于步骤2中加入的β-巯基乙胺,之后重复步骤2;

  5.加入4倍于步骤1中加入的丙烯酸烯丙酯,之后重复步骤1;

  6.加入4倍于步骤2中加入的β-巯基乙胺,之后重复步骤2;

  7.加入与步骤6的β-巯基乙胺等摩尔数的甲基丙烯酸缩水甘油酯,在80℃反应1h。

  经过步骤1~6,制备得到了高度支化的端官能团为氨基的树状支化大分子,之后,通过步骤7,将末端的氨基改性成为甲基丙烯酸酯基。

  拓扑弹性体的制备:

  在制备得到的高度支化的端官能团为甲基丙烯酸酯的树状支化大分子之中加入1wt%的光引发剂2959,搅拌均匀之后倒入模具中,在365nm的紫外光下交联固化1min,即得到拓扑弹性体。获得的拓扑弹性体的模量为100kPa,断裂伸长率为1000%,弹性回复85%,支化度为80%。

  实施例3(后交联法,两种树状支化大分子共聚成拓扑弹性体)

  实施例3的原料及来源如表3所示:

  表3实施例3原料及来源

  

  

  端基为氨基的树状支化大分子的制备:

  1.首先,按照三烯丙基胺与丙烯酸烯丙酯为1:6(摩尔比)的比例称取样品搅拌均匀,之后加入5wt%的三乙胺催化并反应1h;

  2.然后,加入与丙烯酸烯丙酯相同摩尔量的β-巯基乙胺,1wt%的光引发剂,在365nm的紫外光照射下,40℃加热下,β-巯基乙胺边反应边溶解;

  3.待β-巯基乙胺完全反应之后,加入2倍于步骤1中加入的丙烯酸烯丙酯,之后重复步骤1;

  4.加入2倍于步骤2中加入的β-巯基乙胺,之后重复步骤2;

  5.加入4倍于步骤1中加入的丙烯酸烯丙酯,之后重复步骤1;

  6.加入4倍于步骤2中加入的β-巯基乙胺,之后重复步骤2。

  经过以上6个步骤,制备得到了高度支化的端官能团为氨基的树状支化大分子。

  端基为丙烯酸酯基的树状支化大分子的制备:

  1.在二氯甲烷中,按照丙烯酸异氰基乙酯与丙三醇的比例为3:1(摩尔量)的比例称取药品,并加入5wt%的三乙胺,在室温下搅拌反应一夜,将产物在正己烷中沉淀三次,抽滤后放入真空烘箱干燥;

  2.在DMSO中,加入与丙烯酸异氰基乙酯等摩尔量的α-硫代甘油,并加入5wt%的三乙胺,在室温下搅拌反应一夜,之后将产物用甲醇稀释后,使用过量无水乙醚进行纯化沉淀;

  3.加入2倍于步骤1的丙烯酸异氰基乙酯,之后重复步骤1;

  4.加入2倍于步骤2的α-硫代甘油,之后重复步骤1;

  5.加入4倍于步骤1的丙烯酸异氰基乙酯,之后重复步骤1;

  6.加入4倍于步骤2的α-硫代甘油,之后重复步骤1;

  7.加入8倍于步骤1的丙烯酸异氰基乙酯,之后重复步骤1。

  经过以上步骤,制备得到了高度支化的端官能团为丙烯酸酯基的树状支化大分子。

  拓扑弹性体的制备:

  在DMSO中,将制备的端官能团为氨基和丙烯酸酯基的树状支化大分子按照1:2(摩尔量)的比例称取,加入5wt%的三乙胺催化,搅拌均匀后加入模具中,在60℃下反应2h。之后,放入真空烘箱干燥一夜,即制备得到了拓扑弹性体。获得的拓扑弹性体的模量为80kPa,断裂伸长率为1200%,弹性回复80%,支化度为85%。

  实施例4(后交联法,小分子交联剂)

  实施例4中的原料及来源如表4所示:

  表4实施例4原料及来源

  

  

  端基为烯丙基的树状支化大分子的制备:

  1.按照三烯丙基胺与丙烯酸烯丙酯为1:6(摩尔比)的比例称取样品搅拌均匀,之后加入5wt%的三乙胺催化并反应1h;

  2.加入与丙烯酸烯丙酯相同摩尔量的β-巯基乙胺,1wt%的光引发剂,在365nm的紫外光照射下,40℃加热下,β-巯基乙胺边反应边溶解;

  3.待β-巯基乙胺完全反应之后,加入2倍于步骤(1)中加入的丙烯酸烯丙酯,之后重复步骤1;

  4.加入2倍于步骤2中加入的β-巯基乙胺,之后重复步骤2;

  5.加入4倍于步骤2中加入的丙烯酸烯丙酯,之后重复步骤1。

  经过1~5步骤,即制备得到了高度支化的端官能团为烯丙基的树状支化大分子。

  拓扑弹性体的制备:

  在制备得到的高度支化的端官能团为烯丙基的树状支化大分子之中加入0.25倍(摩尔量)的1,10-癸二硫醇,1wt%的光引发剂2959,搅拌均匀之后铺平,在365nm的紫外光下交联固化1min,即得到交联性的拓扑弹性体。获得的拓扑弹性体的模量为100kPa,断裂伸长率为800%,弹性回复75%,支化度为80%。

  实施例5(接枝法)

  实施例5中的原料及来源如表5所示:

  表5实施例5原料及来源

  

  其他聚合物网络的制备:

  1.按照AA与HDDA为5:1(摩尔比)的比例称取样品并搅拌均匀;

  2.在避光的条件下加入1wt%的光引发剂2959,搅拌均匀;

  3.将前驱液倒入模具中,在365nm的紫外光下照射1min,交联固化,得到聚合物前驱网络。

  拓扑弹性体的制备:

  1.端基为丙烯酸酯基团的树状支化大分子依据实施例3中制备而得,之后,将制备的聚合物前驱网络浸入该聚合物中1h;

  2.待聚合物网络充分溶胀舒展开之后,加入5wt%的三乙胺,搅拌均匀并60℃下反应1h之后,将其取出,使用DMF浸泡置换之后,放入真空烘箱干燥,得到拓扑弹性体。

  获得的拓扑弹性体的模量为100kPa,断裂伸长率为600%,弹性回复80%,支化度为80%。

  实施例6(共聚法,双网络拓扑弹性体)

  实施例6中的原料及来源如表6所示:

  表6实施例6原料及来源

  

  双网络弹性体的制备:

  1.端基为丙烯酸酯基团的树状支化大分子依据实施例3中制备而得;接着在该聚合物中分别加入丙三醇、聚四氢呋喃、和六亚甲基二异氰酸酯,摩尔比分别为2:4:7。其中树状支化大分子与其他试剂总质量比相等;

  2.在上述前驱液体中分别加入1wt%的DBTDL和光引发剂2959,搅拌均匀;

  3.将前驱液倒入模具中,先在60℃下反应1h之后,在365nm的紫外光下照射1min,交联固化,得到双网络弹性体。

  获得的拓扑弹性体的模量为200kPa,断裂伸长率为500%,弹性回复95%,支化度为70%。

《一种具有高度支化结构和低模量高弹性的拓扑弹性体的制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)