欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种聚氨酯泡棉的制备方法独创技术21285字

一种聚氨酯泡棉的制备方法

2021-01-31 23:57:43

一种聚氨酯泡棉的制备方法

  技术领域

  本发明实施例涉及聚氨酯发泡材料生产技术领域,具体涉及一种聚氨酯泡棉的制备方法。

  背景技术

  聚氨酯为主链含-NHCOO-重复结构单元的一类聚合物,英文缩写PU,由异氰酸酯(单体)与羟基化合物聚合而成。聚氨酯含有强极性的氨基甲酸酯基,不溶于非极性基团,具有良好的耐油性、韧性、耐磨性、耐老化性和粘合性。用不同原料可制得适应较宽温度范围(-50-150℃)的材料,包括泡棉、胶粘剂、热塑性树脂和热固性树脂等。

  现有技术中,随着电子产品和汽车产品等的不断发展,对聚氨酯发泡材料的应用越来越多,特别是对具有一定机械强度的聚氨酯发泡材料的需求不断增大。专利号为201710322608.X的授权发明专利,研究了高密度聚氨酯泡棉的配方和生产方法,并且制得了具有密度均匀性好,减震缓冲性能优越得高密度聚氨酯泡棉,解决了现有技术中聚氨酯泡棉机械性能差的问题。但是,随着产品的不断发展,对聚氨酯发泡材料的机械强度的要求不断提高,现有的配方和生产方法,难以达到特殊产品的使用要求。因此,申请人在专利号为201710322608.X的授权发明专利基础上进行配方和工艺的改进,经过验证,在保持原有特性的基础上,进一步提高了聚氨酯泡棉的机械强度,扩大了产品的应用范围。

  发明内容

  为此,本发明实施例提供一种聚氨酯泡棉的制备方法,以解决现有技术中存在的相关技术问题。

  为了实现上述目的,本发明实施例提供如下技术方案:

  一种聚氨酯泡棉的制备方法,包括以下步骤:

  步骤一:将60-80重量份聚酯多元醇、20-40重量份淀粉、3-7重量份玻璃纤维、2-4重量份氨基甲酸乙酯、1-2重量份硬脂酸以及2-5重量份水加入到反应釜中,混合均匀,其中聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的混合物,且聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的质量比为3:1;

  步骤二:将15-25重量份异氰酸酯加入到步骤一中所述反应釜,在氮气保护下加热80-90℃反应2-4小时,所述异氰酸酯为1,5-萘二异氰酸酯;

  步骤三:将步骤二中所述反应釜降温至50-60℃,加入0.5-2重量份催化剂、以及4-8重量份扩链剂,保温3-5小时;

  步骤四:将1-3重量份稳定剂加入到步骤三中反应釜,搅拌均匀后装入到喷射机一中,并加热至100℃备用;

  步骤五:准备3-10重量份粉煤灰装入喷射机二中,并加热至100℃备用;

  步骤六:准备2-5重量份陶瓷粉装入喷射机三中,并加热至100℃备用;

  步骤七:准备成型模具,喷射机一和喷射机二设置在模具上方,且喷射机一和喷射机二间隔设置,喷射机三对称设于模具两侧,喷射机一、喷射机二和喷射机三均加热至120℃并朝向模具喷射,模具压力为0.5-3MPa,聚氨酯泡棉厚度为20mm-50mm;

  步骤八:将模具在2min内急速降温至30℃,并保温30-40min,固化得到聚氨酯泡棉。

  进一步地,所述步骤三中催化剂为辛酸亚锡或二丁基锡二月桂酸酯。

  进一步地,所述步骤三中扩链剂包括1,4-丁二醇、乙二醇、一缩二乙二醇、乙二胺、二乙烯二胺、三乙烯四胺中的一种或多种的组合。

  进一步地,所述步骤四中稳定剂为硅油。

  本发明实施例具有如下优点:

  本发明将淀粉和聚酯多元醇进行预先混合,淀粉作为含有大量羟基的葡萄糖聚合物,与聚酯多元醇相容性高,预先混合使得其与异氰酸酯发生亲和加成反应时,反应更充分,利用聚酯多元醇和淀粉协同作用,可以提高聚氨酯的密度,并保证密度的均匀性,同时改善其回弹力;硬脂酸和氨基甲酸乙酯的加入,能够稳定淀粉和聚酯多元醇的反应结构,使发泡大小更加均匀,同时促进玻璃纤维进入到淀粉和聚酯多元醇中,提高聚氨酯泡棉的机械强度;

  本发明提供了利用混合聚酯多元醇和异氰酸酯反应,混合聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇,聚己二酸乙二醇丁二醇酯是一种混合二元醇聚酯,它的使用减小了聚氨酯的结晶性,增加聚氨酯的初黏强度,聚碳酸酯二醇具有良好的耐水解性和耐氧化性,二者混合使用时,可以提高聚氨酯泡棉的性能;

  同时,本发明创造性的引入了粉煤灰和陶瓷粉,通过与淀粉和聚酯多元醇的同时喷射,直接混入到聚氨酯泡棉的生产结构中,粉煤灰能够吸收淀粉和聚酯多元醇反应混合物中的水分,与陶瓷粉配合,加速聚氨酯泡棉的固定过程,大大改善了聚氨酯泡棉的物理性能。

  具体实施方式

  以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

  为了解决现有技术中存在的相关技术问题,本申请实施例提供了一种聚氨酯泡棉的制备方法,旨在生产出机械性能更强的聚氨酯发泡材料,提高适用范围,具体包括以下步骤:

  步骤一:将60-80重量份聚酯多元醇、20-40重量份淀粉、3-7重量份玻璃纤维、2-4重量份氨基甲酸乙酯、1-2重量份硬脂酸以及2-5重量份水加入到反应釜中,混合均匀,其中聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的混合物,且聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的质量比为3:1。具体的,聚己二酸乙二醇丁二醇酯由己二酸、乙二醇和丁二醇反应合成,作为一种混合二元醇聚酯,它的使用减小了聚氨酯的结晶性;聚碳酸酯二醇为一种白色蜡状固体,羟值为100mg%20KOH/g,可提供内聚力大,粘接强度高的预聚体。淀粉是一种多羟基葡萄糖聚合物,结构都含有丰富的羟基,可以部分代替聚酯多元醇与异氰酸酯发生反应制备聚氨酯,淀粉与聚酯多元醇混合均匀再进行反应时,协同效应显著。

  步骤二:将15-25重量份异氰酸酯加入到步骤一中所述反应釜,在氮气保护下加热80-90℃反应2-4小时,所述异氰酸酯为1,5-萘二异氰酸酯。所述异氰酸酯为1,5-萘二异氰酸酯(1,5-naphthalene%20diisocyanate,简称NDI),NDI熔点较高,分子的刚性、规整性和对称性高,可以从根本上提高聚氨酯的相分离程度,使得聚氨酯获得更为优异的机械性能和物理性能,其制品具有高强度、回弹性能优良等特性,是最佳的减震密封材料。聚酯多元醇和异氰酸酯反应,水作为发泡剂,反应放出二氧化碳成为泡核,使反应混合物膨胀,得到具有开孔结构的泡沫。另外氮气保护使得反应过程中各原料不易被空气氧化,可提高制得的聚氨酯材料的稳定性。

  步骤三:将步骤二中所述反应釜降温至50-60℃,加入0.5-2重量份催化剂、以及4-8重量份扩链剂,保温3-5小时。所述催化剂为辛酸亚锡,用于调节发泡反应和凝胶反应的速度,使之处于良好的平衡状态,提高产品生产效率;所述扩链剂为1,4-丁二醇,1,4-丁二醇与预聚体中的异氰酸酯基团反应,生产氨基甲酸酯或脲,起扩链或交联作用。辛酸亚锡和1,4-丁二醇并用可获得最佳的泡孔结构。

  步骤四:将1-3重量份稳定剂加入到步骤三中反应釜,搅拌均匀后装入到喷射机一中,并加热至100℃备用;

  步骤五:准备3-10重量份粉煤灰装入喷射机二中,并加热至100℃备用;粉煤灰能够快速吸收聚氨酯发泡材料中的水分,加速发泡材料的固化速度。

  步骤六:准备2-5重量份陶瓷粉装入喷射机三中,并加热至100℃备用;陶瓷粉能够显著提高聚氨酯泡棉的机械强度,可与上述粉煤灰进行配合,采用喷射方式进入到聚氨酯发泡材料内。

  步骤七:准备成型模具,喷射机一和喷射机二设置在模具上方,且喷射机一和喷射机二间隔设置,喷射机三对称设于模具两侧,喷射机一、喷射机二和喷射机三均加热至120℃并朝向模具喷射,模具压力为0.5-3MPa,聚氨酯泡棉厚度为20mm-50mm;如上述结构可知,喷射机二向外喷出的粉煤灰可间隔进入到聚氨酯发泡材料中,且成竖向结构;而喷射机三向外喷出的陶瓷粉可在厚度方向上进入到聚氨酯发泡材料中,与粉煤灰形成网格状结构,提高了聚氨酯泡棉的机械强度。上述工作可通过控制喷射机一、喷射机二和喷射机三间隔喷射实现。如,喷射机一和喷射机二首先喷射1-2s后停止,喷射机三喷射2s后停止,如上过程,可实现聚氨酯泡棉内形成网格状结构,即通过加入玻璃纤维、粉煤灰和陶瓷粉等提高了聚氨酯泡棉的机械强度,同时又从加工步骤上实现聚氨酯泡棉的网格状结构,提高机械性能。

  步骤八:将模具在2min内急速降温至30℃,并保温30-40min,固化得到聚氨酯泡棉。快速冷却,加速固化过程,进一步提高了机械强度。

  进一步地,所述步骤三中催化剂为辛酸亚锡或二丁基锡二月桂酸酯。

  进一步地,所述步骤三中扩链剂包括1,4-丁二醇、乙二醇、一缩二乙二醇、乙二胺、二乙烯二胺、三乙烯四胺中的一种或多种的组合。

  进一步地,所述步骤四中稳定剂为硅油。可降低发泡体系混合料的表面张力,从而稳定泡孔,防止泡沫倒塌,并控制抛空的大小和均匀度。

  基于上述工艺步骤,本申请为了更好的说明其生产的聚氨酯泡棉的机械强度,提供了如下实施例和对比例。

  实施例1

  本实施例提供了一种聚氨酯泡棉的制备方法,包括以下步骤:

  步骤一:将60重量份聚酯多元醇、40重量份淀粉、3重量份玻璃纤维、2重量份氨基甲酸乙酯、1重量份硬脂酸以及2重量份水加入到反应釜中,混合均匀,其中聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的混合物,且聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的质量比为3:1。

  步骤二:将15重量份异氰酸酯加入到步骤一中所述反应釜,在氮气保护下加热80℃反应4小时,所述异氰酸酯为1,5-萘二异氰酸酯。

  步骤三:将步骤二中所述反应釜降温至60℃,加入0.5重量份催化剂、以及4重量份扩链剂,保温5小时;

  步骤四:将1重量份稳定剂加入到步骤三中反应釜,搅拌均匀后装入到喷射机一中,并加热至100℃备用;

  步骤五:准备4重量份粉煤灰装入喷射机二中,并加热至100℃备用;

  步骤六:准备2重量份陶瓷粉装入喷射机三中,并加热至100℃备用;

  步骤七:准备成型模具,喷射机一和喷射机二设置在模具上方,且喷射机一和喷射机二间隔设置,喷射机三对称设于模具两侧,喷射机一、喷射机二和喷射机三均加热至120℃并朝向模具喷射,模具压力为0.5MPa,聚氨酯泡棉厚度为20mm。

  步骤八:将模具在2min内急速降温至30℃,并保温30min,固化得到聚氨酯泡棉。

  实施例2

  本实施例提供了一种聚氨酯泡棉的制备方法,包括以下步骤:

  步骤一:将65重量份聚酯多元醇、35重量份淀粉、4重量份玻璃纤维、2重量份氨基甲酸乙酯、2重量份硬脂酸以及3重量份水加入到反应釜中,混合均匀,其中聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的混合物,且聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的质量比为3:1。

  步骤二:将18重量份异氰酸酯加入到步骤一中所述反应釜,在氮气保护下加热80℃反应3小时,所述异氰酸酯为1,5-萘二异氰酸酯。

  步骤三:将步骤二中所述反应釜降温至50℃,加入0.8重量份催化剂、以及5重量份扩链剂,保温3小时;

  步骤四:将1重量份稳定剂加入到步骤三中反应釜,搅拌均匀后装入到喷射机一中,并加热至100℃备用;

  步骤五:准备3重量份粉煤灰装入喷射机二中,并加热至100℃备用;

  步骤六:准备4重量份陶瓷粉装入喷射机三中,并加热至100℃备用;

  步骤七:准备成型模具,喷射机一和喷射机二设置在模具上方,且喷射机一和喷射机二间隔设置,喷射机三对称设于模具两侧,喷射机一、喷射机二和喷射机三均加热至120℃并朝向模具喷射,模具压力为1MPa,聚氨酯泡棉厚度为20mm。

  步骤八:将模具在2min内急速降温至30℃,并保温40min,固化得到聚氨酯泡棉。

  实施例3

  本实施例提供了一种聚氨酯泡棉的制备方法,包括以下步骤:

  步骤一:将70重量份聚酯多元醇、30重量份淀粉、5重量份玻璃纤维、3重量份氨基甲酸乙酯、1重量份硬脂酸以及4重量份水加入到反应釜中,混合均匀,其中聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的混合物,且聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的质量比为3:1。

  步骤二:将21重量份异氰酸酯加入到步骤一中所述反应釜,在氮气保护下加热90℃反应2小时,所述异氰酸酯为1,5-萘二异氰酸酯。

  步骤三:将步骤二中所述反应釜降温至50℃,加入2重量份催化剂、以及6重量份扩链剂,保温4小时;

  步骤四:将2重量份稳定剂加入到步骤三中反应釜,搅拌均匀后装入到喷射机一中,并加热至100℃备用;

  步骤五:准备8重量份粉煤灰装入喷射机二中,并加热至100℃备用;

  步骤六:准备3重量份陶瓷粉装入喷射机三中,并加热至100℃备用;

  步骤七:准备成型模具,喷射机一和喷射机二设置在模具上方,且喷射机一和喷射机二间隔设置,喷射机三对称设于模具两侧,喷射机一、喷射机二和喷射机三均加热至120℃并朝向模具喷射,模具压力为1.5MPa,聚氨酯泡棉厚度为20mm。

  步骤八:将模具在2min内急速降温至30℃,并保温40min,固化得到聚氨酯泡棉。

  实施例4

  本实施例提供了一种聚氨酯泡棉的制备方法,包括以下步骤:

  步骤一:将75重量份聚酯多元醇、25重量份淀粉、6重量份玻璃纤维、3重量份氨基甲酸乙酯、2重量份硬脂酸以及5重量份水加入到反应釜中,混合均匀,其中聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的混合物,且聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的质量比为3:1。

  步骤二:将23重量份异氰酸酯加入到步骤一中所述反应釜,在氮气保护下加热90℃反应3小时,所述异氰酸酯为1,5-萘二异氰酸酯。

  步骤三:将步骤二中所述反应釜降温至55℃,加入1.5重量份催化剂、以及8重量份扩链剂,保温5小时;

  步骤四:将2重量份稳定剂加入到步骤三中反应釜,搅拌均匀后装入到喷射机一中,并加热至100℃备用;

  步骤五:准备10重量份粉煤灰装入喷射机二中,并加热至100℃备用;

  步骤六:准备3重量份陶瓷粉装入喷射机三中,并加热至100℃备用;

  步骤七:准备成型模具,喷射机一和喷射机二设置在模具上方,且喷射机一和喷射机二间隔设置,喷射机三对称设于模具两侧,喷射机一、喷射机二和喷射机三均加热至120℃并朝向模具喷射,模具压力为3MPa,聚氨酯泡棉厚度为20mm。

  步骤八:将模具在2min内急速降温至30℃,并保温30min,固化得到聚氨酯泡棉。

  实施例5

  本实施例提供了一种聚氨酯泡棉的制备方法,包括以下步骤:

  步骤一:将80重量份聚酯多元醇、20重量份淀粉、7重量份玻璃纤维、4重量份氨基甲酸乙酯、1重量份硬脂酸以及5重量份水加入到反应釜中,混合均匀,其中聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的混合物,且聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇的质量比为3:1。

  步骤二:将25重量份异氰酸酯加入到步骤一中所述反应釜,在氮气保护下加热90℃反应4小时,所述异氰酸酯为1,5-萘二异氰酸酯。

  步骤三:将步骤二中所述反应釜降温至60℃,加入1.2重量份催化剂、以及7重量份扩链剂,保温4小时;

  步骤四:将3重量份稳定剂加入到步骤三中反应釜,搅拌均匀后装入到喷射机一中,并加热至100℃备用;

  步骤五:准备5重量份粉煤灰装入喷射机二中,并加热至100℃备用;

  步骤六:准备5重量份陶瓷粉装入喷射机三中,并加热至100℃备用;

  步骤七:准备成型模具,喷射机一和喷射机二设置在模具上方,且喷射机一和喷射机二间隔设置,喷射机三对称设于模具两侧,喷射机一、喷射机二和喷射机三均加热至120℃并朝向模具喷射,模具压力为2MPa,聚氨酯泡棉厚度为20mm。

  步骤八:将模具在2min内急速降温至30℃,并保温40min,固化得到聚氨酯泡棉。

  对比例1

  按照实施例1中的步骤,提供一种聚氨酯泡棉的制备方法,但在步骤六和七中不添加陶瓷粉。

  对比例2

  按照实施例1中的步骤,提供一种聚氨酯泡棉的制备方法,但在步骤五和七中不添加粉煤灰。

  对比例3

  按照实施例1中的步骤,提供一种聚氨酯泡棉的制备方法,在步骤五、六和七中,陶瓷粉和粉煤灰均不添加。

  对比例4

  按照实施例1中的步骤,提供一种聚氨酯泡棉的制备方法,在步骤一中不添加玻璃纤维、氨基甲酸乙酯和硬脂酸。

  根据以上实施例和对比例,检测聚氨酯泡棉的物理性能,结果如表1所示。

  

  

  从表1可以看出,通过本发明提供的方法制得的聚氨酯泡棉的密度稳定于0.7g/cm3,密度进一步提高,抗冲击强度高,说明聚氨酯泡棉具有优越的减震缓冲性能。同时,通过对比例可知,玻璃纤维、氨基甲酸乙酯与粉煤灰和陶瓷粉之间产生协同作用,促进了聚氨酯泡棉机械性能的提高。

  本发明将淀粉和聚酯多元醇进行预先混合,淀粉作为含有大量羟基的葡萄糖聚合物,与聚酯多元醇相容性高,预先混合使得其与异氰酸酯发生亲和加成反应时,反应更充分,利用聚酯多元醇和淀粉协同作用,可以提高聚氨酯的密度,并保证密度的均匀性,同时改善其回弹力;硬脂酸和氨基甲酸乙酯的加入,能够稳定淀粉和聚酯多元醇的反应结构,使发泡大小更加均匀,同时促进玻璃纤维进入到淀粉和聚酯多元醇中,提高聚氨酯泡棉的机械强度;

  本发明提供了利用混合聚酯多元醇和异氰酸酯反应,混合聚酯多元醇包括聚己二酸乙二醇丁二醇酯和聚碳酸酯二醇,聚己二酸乙二醇丁二醇酯是一种混合二元醇聚酯,它的使用减小了聚氨酯的结晶性,增加聚氨酯的初黏强度,聚碳酸酯二醇具有良好的耐水解性和耐氧化性,二者混合使用时,可以提高聚氨酯泡棉的性能;

  同时,本发明创造性的引入了粉煤灰和陶瓷粉,通过与淀粉和聚酯多元醇的同时喷射,直接混入到聚氨酯泡棉的生产结构中,粉煤灰能够吸收淀粉和聚酯多元醇反应混合物中的水分,与陶瓷粉配合,加速聚氨酯泡棉的固定过程,大大改善了聚氨酯泡棉的物理性能。

  虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

《一种聚氨酯泡棉的制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)