欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种含碳聚烯烃母粒的制备方法及应用独创技术14326字

一种含碳聚烯烃母粒的制备方法及应用

2021-03-11 13:58:29

一种含碳聚烯烃母粒的制备方法及应用

  技术领域

  本发明属于高分子材料技术领域,具体涉及一种含碳聚烯烃母粒的制备方法及应用。

  背景技术

  聚烯烃是石油化工和煤化工的重要产品之一,也是精细化工和下游日用、医疗卫生、电子电器、包装等行业的关键原料之一,作为一类大宗化工产品,其生产和应用对国民经济和人民生活都有重要影响。聚烯烃属于热塑性聚合物,一般具有优良的电绝缘性、化学稳定性和生物安全性,且易于加工成型,但其热稳定性差、环境适应能力弱、容易产生静电且力学性能不具优势,限制了其在众多精细领域的应用。目前,国内市场上聚烯烃产品同质化严重、竞争激烈,逐渐形成买方市场,迫使生产和加工企业进行高端化、功能化深加工,以拓宽应用市场,提高产品收益。

  以物理添加或化学复合的方式,在聚烯烃基体中引入一定量的功能性物质或基团,可以实现改善其导电、力学、热稳定、抗老化等综合实用性能的目的。其中,碳(C)及其同素异形体,如石墨烯、碳纳米管、碳纤维、石墨、炭黑、活性炭等,是一类重要的改质剂,其所具有的独特性能正好弥补聚烯烃的固有缺陷,如较高的弹性模量可改善聚烯烃的部分力学性能;较大的比表面积可降低聚烯烃对有机蒸汽的透过率,增强材料的密封性;优异的电学性能可以消除聚烯烃在成型和应用过程中的静电积聚,或制成特定用途的导电产品和电极材料;显著的界面效应能延缓聚烯烃材料在使用环境中的氧化、降解和老化等进程。

  然而,碳材料与聚烯烃的粘结性、相容性较差,且为了提高聚烯烃材料的综合性能,往往需要加入多种添加剂,这使得碳材料在聚烯烃基体中的均匀分散变得困难,限制了碳材料改性功能的发挥。现有的聚烯烃改性材料制备方法中,主要是将原材料与添加剂在液相或熔融相中进行强制混合,如溶液共混法和熔融共混法,直接制成产品或高浓度母粒,作为主要改质剂的碳材料在其中多以团聚态出现,分散均匀性较差,致使所期望的性能改善不够稳定,难以进行定向加工利用。

  发明内容

  为了强化碳材料在聚烯烃基体中的分散,经过试验探索并结合表征分析和性能测试结果,本发明将粉状大比表面碳材料的静电吸附作用与聚烯烃颗粒的微热熔粘结作用相结合,通过适宜温度下的两级机械混合,实现了大批量、均质化含碳聚烯烃母粒的快速制备。该制备方法的原料易得、流程短且设备简单,碳材料品种和加入量可调节,产品呈类聚烯烃的颗粒状,可直接与新鲜聚烯烃和其他改性添加剂进行复配,以获得系列化的功能性聚烯烃基复合材料。

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将碳材料粉末与聚烯烃颗粒送入机械混合装置进行混合,形成预混物;

  (2)将预混物转入空气干燥设备进行除湿处理,得到热态干燥混合物;

  (3)将热态干燥混合物送入恒温机械混合装置,在2-10℃的温度下进行微热熔粘结混合,得到黑色且表面不沾碳的类聚烯烃颗粒状母粒;

  其中,所述步骤(2)中所述除湿处理的时间为30-120min;

  其中,所述步骤(3)中所述微热熔粘结混合的时间为10-60min。

  优选地,步骤(1)中所述碳材料粉末与聚烯烃颗粒混合的质量比为1:(20-1000)。

  优选地,步骤(1)中所述碳材料粉末与聚烯烃颗粒混合的质量比为1:(100-800)。

  优选地,步骤(1)中所述碳材料粉末与聚烯烃颗粒混合的质量比为1:500。

  优选地,所述碳材料粉末为碳及碳的同素异形体粉末,如石墨烯粉末、碳纳米管粉末、碳纤维粉末、石墨粉末、炭黑粉末、活性炭粉末中的一种或多种混合物。

  优选地,所述聚烯烃颗粒为聚乙烯类颗粒、聚丙烯颗粒、聚1-丁烯颗粒中的一种。

  优选地,所述步骤(1)中的机械混合装置为搅拌混合机、振动混合机、螺旋混合机中的一种。

  优选地,所述步骤(2)中的空气干燥设备为具有加热控温功能的静设备或动设备,具体为电热鼓风干燥机、气流干燥机、旋转干燥机、恒温机械混合装置中的一种或多种组合。

  优选地,步骤(3)中所述恒温机械混合装置为恒温搅拌器、恒温振动器、恒温转动器、恒温螺杆混合器、恒温双辊混合器中的一种或多种组合。

  一种含碳聚烯烃母粒的应用,所述含碳聚烯烃母粒用于制备专用的发泡材料、制备抗静电材料或制备涂覆料。

  本发明的有益效果:

  (1)本发明首先利用碳材料粉末和聚烯烃颗粒之间强烈的静电吸附作用,辅以适当强度(频率、时间)的机械混合,使得碳材料粉末较为均匀、稳定地物理性单层/少层吸附于聚烯烃颗粒的整个表面;然后在聚烯烃颗粒的近熔点温度下,借助其微热熔粘结作用将静电吸附的碳材料粉末进一步固定并“镶嵌”于聚烯烃颗粒表面,达到不沾碳的效果。同时,适当强度的二次机械混合,保证了碳材料粉末静电吸附和微热熔粘结的均匀性、彻底性;当本发明制备的含碳聚烯烃母粒与新鲜聚烯烃颗粒及其他改性剂、添加剂等进行复合或二次加工时,碳材料粉末亦能随含碳聚烯烃母粒的充分混合而均匀分散于复合材料或二次加工制品中;

  (2)本发明强化了碳材料在聚烯烃基体中的分散,可在较短时间内大批量制备含碳聚烯烃母粒。该母粒可直接与聚烯烃颗粒、改性剂、添加剂等进行混合再加工,以获得梯级化、系列化的聚烯烃基复合材料。该含碳聚烯烃母粒因所加入碳材料的特殊增强作用而适用于不同的应用领域。

  附图说明

  图1为本发明含碳聚烯烃母粒快速制备方法的流程示意图。

  具体实施方式

  实施例1

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将石墨烯粉末与高密度聚乙烯颗粒按照质量比为1:1000在搅拌混合机中搅拌混合,借助静电吸附作用形成预混物;

  (2)将预混物转入电热鼓风干燥机除湿处理30min,得到热态干燥混合物;

  (3)将热态干燥混合物送入恒温搅拌器,在高密度聚乙烯熔点以下2℃进行10min微热熔粘结混合,得到黑色且表面不沾碳的类高密度聚乙烯颗粒状母粒。

  实施例2

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将碳纳米管粉末与聚丙烯颗粒按照质量比为1:500在振动混合机中振动混合,借助静电吸附作用形成预混物;

  (2)将预混物转入气流干燥机除湿处理60min,得到热态干燥混合物;

  (3)将热态干燥混合物送入恒温振动器,在聚丙烯熔点以下5℃进行30min微热熔粘结混合,得到黑色且表面不沾碳的类聚丙烯颗粒状母粒。

  实施例3

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将碳纤维粉末与聚1-丁烯颗粒按照质量比为1:100在振动混合器中振动混合,借助静电吸附作用形成预混物;

  (2)将预混物转入旋转干燥机除湿处理120min,得到热态干燥混合物;

  (3)将热态干燥混合物送入恒温转动器,在聚1-丁烯熔点以下10℃进行60min微热熔粘结混合,得到黑色且表面不沾碳的类聚1-丁烯颗粒状母粒。

  实施例4

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将石墨粉末与低密度聚乙烯颗粒按照质量比为1:50在螺旋混合机中螺旋混合,借助静电吸附作用形成预混物;

  (2)将预混物转入恒温螺杆混合器除湿处理40min;

  (3)在低密度聚乙烯熔点以下4℃进行15min微热熔粘结混合,得到黑色且表面不沾碳的类低密度聚乙烯颗粒状母粒。

  实施例5

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将炭黑粉末与聚丙烯颗粒按照质量比为1:20在螺旋混合机中螺旋混合,借助静电吸附作用形成预混物;

  (2)将预混物转入恒温双辊混合器除湿处理90min,得到热态干燥混合物;

  (3)将热态干燥混合物送入恒温转动器,在聚丙烯熔点以下8℃进行40min微热熔粘结混合,得到黑色且表面不沾碳的类聚丙烯颗粒状母粒。

  实施例6

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将活性炭粉末与线性低密度聚乙烯颗粒按照质量比为1:200在搅拌混合机中搅拌混合,借助静电吸附作用形成预混物;

  (2)将预混物转入电热鼓风干燥机除湿处理30min,得到热态干燥混合物;

  (3)将热态干燥混合物送入恒温搅拌器,在线性低密度聚乙烯熔点以下6℃进行35min微热熔粘结混合,得到黑色且表面不沾碳的类线性低密度聚乙烯颗粒状母粒。

  实施例7

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将石墨烯粉末和碳纳米管粉末按照质量比1:1混合再与高密度聚乙烯颗粒按照质量比为1:400在搅拌混合机中搅拌混合,借助静电吸附作用形成预混物;

  (2)将预混物依次转入气流干燥机和恒温双辊混合器,分别进行除湿处理30min和30min,得到热态干燥混合物;

  (3)在高密度聚乙烯熔点以下5℃进行20min微热熔粘结混合,得到黑色且表面不沾碳的类高密度聚乙烯颗粒状母粒。

  实施例8

  一种含碳聚烯烃母粒的制备方法,具体制备步骤如下:

  (1)在常温下,将碳纳米管粉末和炭黑粉末按照质量比2:1混合再与聚丙烯颗粒按照质量比为1:800在振动混合机中振动混合,借助静电吸附作用形成预混物;

  (2)将预混物转入旋转干燥机除湿处理60min,得到热态干燥混合物;

  (3)将热态干燥混合物依次送入恒温搅拌器和恒温双辊混合器,在聚丙烯熔点以下10℃分别进行30min和30min的微热熔粘结混合,得到黑色且表面不沾碳的类聚丙烯颗粒状母粒。

  实施例1-8母粒的制备时间、碳材料的微观分散情况、热失重曲线平滑度和失重起始温度提高值见表1:

  

  由表1中数据以及现象可知,采用本发明中三步制备方法,可在1-4h内大批量制备含碳聚烯烃母粒,且制备的母粒中碳材料粉末呈现出较为均匀的微观分散状态。另外,平滑的热失重曲线也表明碳材料粉末和聚烯烃颗粒实现了均匀混合,而因所加入碳材料粉末的种类、组成和质量差别,不同实施例中制备出的含碳聚烯烃母粒的耐温效果存在一定差异,但均较纯聚烯烃有显著提升。

  一种含碳聚烯烃母粒的应用:

  应用例1:

  采用本发明的快速制备方法,将碳纳米管粉末和炭黑粉末按照质量比2:1混合再与聚丙烯颗粒按照质量比为1:800制成含碳聚丙烯母粒。加入偶氮二甲酰胺(化学发泡剂),经熔融混合后制得聚丙烯基发泡材料。其与未加入碳材料粉末的对比样品相比,表观密度降低约50%,泡孔均匀,发泡倍率提高约30%,耐温上限提高约8℃,110℃下放置24 h后的尺寸收缩率降低约25%。

  应用例2:

  采用本发明的快速制备方法,将石墨烯粉末和碳纳米管粉末按照质量比1:1混合再与高密度聚乙烯颗粒按照质量比为1:400制成含碳高密度聚乙烯母粒。将该母粒与适量硅烷偶联剂(KH550)、抗氧剂(受阻酚)、增塑剂(柠檬酸三丁酯)、分散剂(聚乙烯蜡)和填充剂(碳酸钙)熔融均质复合,再进行模具热压和裁切,所获得的电子器件包装袋具有良好的抗静电效果。其与未加入碳材料粉末的对比样品相比,体积电阻率降低约4个数量级,电导率提高约4个数量级,能较好地消除加工/运输过程中所产生的静电,防止静电积聚对电子器件造成损害。

  应用例3:

  采用本发明的快速制备方法,将石墨烯粉末与高密度聚乙烯颗粒按照质量比为1:1000制成含碳高密度聚乙烯母粒。加入硅烷偶联剂、石蜡和滑石粉,经溶液共混法均质复合,除去溶剂后获得粉状涂覆料,将其均匀喷覆于预热金属表面获得喷塑金属件。其与未加入碳材料粉末的对比样品相比,抗氧化能力指数提高约20%,热失重起始温度提高约9℃,具有良好的耐候性能,可作为涂覆料应用。

  本发明的含碳聚烯烃母粒既可直接加工使用,亦可与新鲜聚烯烃、改性剂、添加剂等进行物理/化学的混合/复合加工,以获得功能型并梯级化、系列化的聚烯烃基复合材料产品。轻质发泡材料、抗静电材料、耐候增强材料以及金属替代材料等是其潜在的重要应用方向,同时可根据目标应用对本发明含碳聚烯烃母粒中的碳材料粉末和聚烯烃基材的种类、状态、组成、质量比例等作相应调整,以适应更广阔的应用领域,促使聚烯烃材料向高端化、功能化应用市场拓展,进一步提高产品的竞争力和附加值。

《一种含碳聚烯烃母粒的制备方法及应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)