欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 乙酸乙烯酯和环状烯酮缩醛单体的共聚物粒子的水性分散体的制备独创技术13336字

乙酸乙烯酯和环状烯酮缩醛单体的共聚物粒子的水性分散体的制备

2021-03-12 20:09:09

乙酸乙烯酯和环状烯酮缩醛单体的共聚物粒子的水性分散体的制备

  背景技术

  本发明涉及聚合物粒子的水性分散体的制备,所述聚合物粒子包含乙酸乙烯酯和环状烯酮缩醛单体的结构单元。

  乙酸乙烯酯(VA)和环状烯酮缩醛(CKA)单体(如2-亚甲基-1,3-二氧杂环庚烷(MDO))的共聚物特别适用于需要聚合物主链降解的应用,如可降解包装,或需要对基于聚合物的薄膜和表面涂层进行物理腐蚀的应用。这些共聚物被描述为在有机溶剂存在下制备,如(例如)在《聚合物杂志(Polym.J.)》2009,41,650-660;《聚合物化学(Polym.Chem.)》2012,3,1260-1266;《聚合物化学(Polym.Chem.)》2015,6,7447-7454;和US%201996/5541275中所公开的。

  有机溶剂用于制备含CKA的聚合物,因为已知CKA为水解不稳定的。举例来说,MDO在水中水解形成乙酸4-羟丁酯,从而降低MDO的结构单元掺入到共聚物主链中的效率。因此,MDO的水解不稳定性要求使用不起反应的有机溶剂;不利的是,这些溶剂由于其高成本、与其去除、回收和再循环相关联的成本以及其对最终分离产物中的残余挥发性有机溶剂的贡献而为不期望的。

  因此,找到一种以显著减少不想要的水解副产物形成的方式来制备水基VA-CKA共聚物的方式将为有利的。

  发明内容

  本发明通过提供一种包含以下步骤的方法来满足本领域的需要:a)在乳液聚合条件下在30℃至55℃范围内的温度下并且在6.0至9.0范围内的pH下使:1)75至98.5重量份的乙酸乙烯酯;2)1至20重量份的环状烯酮缩醛单体;和3)0.05至5重量份的单烯键式不饱和酸单体或其盐接触;以形成共聚物粒子的水性分散体,所述共聚物粒子包含乙酸乙烯酯、环状烯酮缩醛和单烯键式不饱和酸单体或其盐的结构单元;其中环状烯酮缩醛单体的特征在于以下结构:

  

  其中n为0、1或2;

  R为H或C1-C6烷基;

  R1和R2各自独立地为H、C1-C12烷基、苯基或乙烯基;或R1和R2与其所连接的碳原子一起形成稠合苯环或稠合C3-C7环脂族环;和

  R1'和R2'各自独立地为H或C1-C12烷基;或R1和R1'和/或R2和R2'形成环外双键;

  其条件是当n为1时:

  R3和R3'各自独立地为H、C1-C12烷基、苯基,或R3和R3'形成环外双键或螺环脂族基团或螺-2-亚甲基-1,3-二氧杂环庚烷基团;

  其另一条件是当n为2时:

  每个R3为H、C1-C12烷基,或与其所连接的碳原子一起形成双键、稠合苯环或稠合C3-C7环脂族环。

  本发明的方法提供一种基本上不含挥发性有机溶剂的水性分散体,分散体适用于例如制造可生物降解包装产品。

  具体实施方式

  本发明提供包含以下步骤的方法:a)在乳液聚合条件下在30℃至55℃范围内的温度下并且在6.0至9.0范围内的pH下使1)75至98.5重量份的乙酸乙烯酯;2)1至20重量份的环状烯酮缩醛单体;和3)0.05至5重量份的单烯键式不饱和酸单体或其盐接触;以形成共聚物粒子的水性分散体,所述共聚物粒子包含乙酸乙烯酯、环状烯酮缩醛和单烯键式不饱和酸单体或其盐的结构单元;其中环状烯酮缩醛单体的特征在于以下结构:

  

  其中n为0、1或2;

  R为H或C1-C6烷基;

  R1和R2各自独立地为H、C1-C12烷基、苯基或乙烯基;或R1和R2与其所连接的碳原子一起形成稠合苯环或稠合C3-C7环脂族环;和

  R1'和R2'各自独立地为H或C1-C12烷基;或R1和R1'和/或R2和R2'形成环外双键;

  其条件是当n为1时:

  R3和R3'各自独立地为H、C1-C12烷基、苯基,或R3和R3'形成环外双键或螺环脂族基团或螺-2-亚甲基-1,3-二氧杂环庚烷基团;

  其另一条件是当n为2时:

  每个R3为H、C1-C12烷基,或与其所连接的碳原子一起形成双键、稠合苯环或稠合C3-C7环脂族环。

  如本文所用,术语“乙酸乙烯酯的结构单元”是指含有以下重复单元的聚合物主链:

  

  其中虚线表示到聚合物主链中的其它结构单元的连接点。

  术语“环状烯酮缩醛单体的结构单元”用于指含有以下重复单元的聚合物主链:

  

  其中R、R1、R2、R3、R1'、R2'、R3'和n如先前所定义。

  环状烯酮缩醛单体的实例包括:

  

  

  和

  

  优选的环状烯酮缩醛单体为2-亚甲基-1,3-二氧杂环庚烷(MDO)。

  

  MDO的结构单元说明如下:

  

  烯键式不饱和酸单体可为含羧酸的单体、含磷酸的单体或含有含硫酸的单体或其盐。合适的含羧酸的单体的实例包括丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、马来酸和富马酸;和合适的含磷酸的单体的实例包括甲基丙烯酸磷酸乙基酯和2-(甲基丙烯酰氧基)乙基膦酸;合适的含有含硫酸的单体包括2-丙烯酰胺基-2-甲基-1-丙磺酸(AMPS)、乙烯基磺酸、丙烯酸2-磺乙基酯、甲基丙烯酸2-磺乙基酯、丙烯酸3-磺丙基酯、甲基丙烯酸3-磺丙基酯和2-丙烯-1-磺酸。烯键式不饱和酸单体优选地为含磺酸的单体,优选地为含磺酸的单体的盐,其中2-丙烯酰胺基-2-甲基丙烷磺酸的盐为特别优选的。

  优选地,聚合物粒子的z平均粒度在50nm,更优选地80nm,并且最优选地100nm;至优选地500nm,更优选地至300nm,更优选地至200nm,并且最优选地至150nm范围内。

  优选地,按VA、CKA和烯键式不饱和酸单体的重量计,VA的使用量在80,更优选地85重量份至96.5,更优选地95重量份范围内;优选地,按VA、CKA和烯键式不饱和酸单体的重量计,CKA的使用量在3重量份至15,更优选地至12重量份,并且最优选地至8重量百分比重量份范围内;并且优选地,按VA、CKA和烯键式不饱和酸单体的重量计,单烯键式不饱和酸单体的使用量优选地在0.1重量份至3,更优选地至1重量份范围内。

  组合物优选地包含基本上不存在的CKA和VA的水解副产物。更具体地说,在CKA为MDO的情况下,按聚合物粒子中MDO的结构单元的重量计,组合物优选地包含小于20,更优选地小于10,更优选地小于5,更优选地小于2,并且最优选地小于1重量百分比的不期望酯乙酸4-羟丁酯(如下所说明)。

  

  组合物优选地另外包含小于3000ppm,更优选地小于2000ppm的乙酸,其为VA水解的不期望副产物。

  在本发明的优选方法中,在乳液聚合条件下,使VA、CKA,优选地MDO和单烯键式不饱和酸单体,优选地含有含硫酸的单体的盐,更优选地AMPS的盐一起接触。优选地,将VA和CKA组合在一起,然后在乳液聚合条件下与表面活性剂和单烯键式不饱和酸单体的水溶液混合。反应控制在30℃,优选地35℃至55℃,优选地至50℃,并且更优选地至45℃范围内的温度下,并且在6.0,优选地6.5,更优选地7.0,并且最优选地7.5至9.0,更优选地至8.5范围内的pH下。在聚合完成之后,获得固体含量优选地在20,更优选地25,并且最优选地30重量百分比,至50,并且更优选地至40重量百分比范围内的共聚物分散体。

  出人意料地,已发现在不使用有机溶剂的情况下,可有效地制备VA和CKA的共聚物水性分散体,并且CKA和VA的不期望水解副产物最少。

  测量粒度的方法

  使用Malvern Zetasizer Nano ZS90测量粒度,所述Malvern Zetasizer NanoZS90使用Zetasizer软件7.11版,以90°的散射角使用动态光散射(DLS)测量Z平均粒度(Dz)。使用MilliQ水(在25℃下18.2MΩ.cm)的水溶液稀释样品分散体的液滴,以实现在200-400千计数/秒(Kcp)范围内的粒子计数。使用仪器的粒度测量方法进行粒度测量,并且通过软件计算Dz。Dz也被称为基于强度的调和平均粒度,并且表达为;

  

  此处,Si为来自具有直径Di的粒子i的散射强度。在ISO 22412:2017(《粒度分析-动态光散射(DLS)(Particle size analysis-Dynamic light scattering(DLS))》)中描述详细的Dz计算。

  乙酸测定方法

  使用安捷伦(Agilent)1100系列高效液相色谱系统执行对乙酸的分析,所述系统配备有Phenomenex Rezex ROA-有机酸H+(8%)(250×4.6)mm管柱(器件编码00G-0138-E0)、Phenomenex安全保护件Carbo-H4元件、在210nm的波长下操作的UV检测器和自动取样器。管柱烘箱温度设定为35℃,并且流动相为含2.5mM磷酸的MilliQ水。仪器以0.4毫升/分钟(等度)的流动速率操作,并且样品注射体积为5μL。使用安捷伦化学工作站(AgilentChemStation)软件(B.04.03版)执行数据获取和分析。通过在MilliQ水(1:100)中稀释,随后在水平往复振荡器上搅拌10分钟来制备用于分析的样品。在25℃下以100000rpm离心样品10分钟,并且通过0.45μm一次性针筒过滤器过滤上清液以用于注射。

  实例1-VA/MDO聚合物粒子的水性分散体的制备

  在容器中通过将乙酸乙烯酯(VA,205.95g)和2-亚甲基-1,3-二氧杂环庚烷(MDO,10.88g)组合来制备单体混合物。分别地,在容器中通过将去离子水(46.18g)、2-丙烯酰胺基-2-甲基-1-丙磺酸钠盐(AMPS盐,1.40g,水中50%活性)、Tergitol-15-S-40二级醇乙氧基化物(15-S-40,1.51g,水中70%活性)和FES-32、月桂基醚磺酸钠(FES-32,6.15g,水中31%活性)组合来制备水性混合物。分别地,将去离子水(285.0g)添加到装备有顶置式搅拌器、冷凝器和热电偶的4颈、1L圆底反应器中。将反应器加热到40℃,之后借助于额外去离子水(51.6g),将FES-32(16.4g,水中31%活性)、AMPS盐(3.95g,水中50%活性)、FeSO4·7H2O(16.2g,水中0.15活性)和乙二胺四乙酸(EDTA,3.45g,水中1.0wt%)添加到反应器中。将单体混合物和水性混合物经60分钟同时进料到反应器中,同时将反应器温度维持在40℃。同时,将分别制备的过硫酸铵/叔丁基过氧化氢溶液(1.38g APS和0.58g t-BHP于37.0g水中)和Bruggolite FF6溶液(2.62g于37.6g水中)经70分钟进料到反应器中。在整个进料过程中,反应物测量为pH=6.5-7。在添加进料完成后,反应器温度维持在40℃下15分钟,并且然后冷却到30℃。通过添加氢氧化铵(水中28%活性),将所得分散体调节到pH=7,并且通过38μm筛过滤。分析滤液的固体百分比(32.9%),并且如使用动态光散射(DLS)所测量的,测定z平均粒度为116nm。通过扩散编辑的1H NMR波谱法,测量2-亚甲基-1,3-二氧杂环庚烷(MDO)的掺入率为(84.3±4.3)%。在所有积分值中假设5%的误差,并且所述误差通过计算MDO的掺入率传递。

  实例2

  重复实例1,但通过逐滴添加氢氧化铵(水中28%活性)在整个进料中将反应物维持在pH=8。分析滤液的固体百分比(31.3%),并且如DLS所测量的,测定z平均粒度为122nm。通过扩散编辑的1H NMR波谱法,测量MDO的掺入率为几乎定量的(约100%)。

  实例3

  重复实例2,但通过将VA(183.95g)和MDO(32.88g)组合来制备单体混合物。分析滤液的固体百分比(29.7%),并且如DLS所测量的,测定z平均粒度为92nm。通过扩散编辑的1HNMR波谱法,测量MDO的掺入率为97.8±6.6%。

  比较实例1

  重复实例1,但在整个进料中反应温度维持在60℃。分析滤液的固体百分比(29.8%),并且如DLS所测量的,测定z平均粒度为177nm。通过扩散编辑的1H NMR波谱法,测量MDO的掺入率为55.1±3.9%。

  比较实例2

  重复实例1,但在整个进料中反应温度维持在80℃。分析滤液的固体百分比(29.4%),并且如DLS所测量的,测定z平均粒度为217nm。通过扩散编辑的1H NMR波谱法,测量MDO的掺入率为37.8±2.7%。

  比较实例3

  重复实例1,除了通过逐滴添加乙酸(水中10%活性)在整个进料中将反应物维持在pH=5外。分析滤液的固体百分比(31.0%),并且如DLS所测量的,测定z平均粒度为248nm。通过扩散编辑的1H NMR波谱法,测量MDO的掺入率为29.0±2.0%。

  比较实例4

  重复实例1,但通过逐滴添加氢氧化铵(水中28%活性)在整个进料中将反应物维持在pH=9.5。分析滤液的固体百分比(29.6%),并且如DLS所测量的,测定z平均粒度为283nm。通过扩散编辑的1H NMR波谱法,测量MDO的掺入率为90.3±6.3%;然而,样品显示出较差的胶体稳定性并且获得7850ppm的凝胶。样品在静置时变成深棕色,并且观察到异常高的浓度的乙酸和乙醛。

  实例表明温度和pH在优化水敏性单体到聚合物主链中的掺入率和在减少由这些单体所致的非所需水解产物的产生方面的作用的重要性。

《乙酸乙烯酯和环状烯酮缩醛单体的共聚物粒子的水性分散体的制备.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)