欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种凹凸结构酚醛树脂微球及其制备方法独创技术17612字

一种凹凸结构酚醛树脂微球及其制备方法

2021-01-09 00:23:04

一种凹凸结构酚醛树脂微球及其制备方法

  技术领域

  本发明涉及化工合成树脂微球领域,具体涉及一种凹凸结构酚醛树脂微球及其制备方法。

  背景技术

  新能源指刚开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等,具有低成本、环保可再生等优势。当前能源和环境问题一直是全球关注的热点问题,解决环境问题首先要使用清洁能源,实现对化石燃料的替代,太阳能和风能是最有前景的替代能源,然而两者的间断性特征阻碍了其大规模应用,因此需要开发新型储能设备。

  储能设备,既在能源大量供应阶段将多余的储存起来,而在供应中断的时候采用储能设备供应以达到能源的连续供应。现阶段常用的储能设备主要包括锂离子电池、钠离子电池、超级电容器等储能设备,这些二次电池各具特点,但是都不能很好的满足大规模储能的需求,解决储能器件的关键是新能源材料。储能设备从最基本的化学原理上来讲都是将电能转化为化学能加以储存,所以作为储能材料,首先要有良好的导电性,除此之外必须具备资源丰富,开采容易,廉价等特点,而炭材料无疑是最理想的选择。炭材料与其它负极嵌锂材料相比,具有高比容量、低电化学电势、廉价、无毒、在空气中稳定等优点,被认为是新世纪最具前景的材料,其多孔结构及较大的比表面积能够有效提高材料的电化学性能。

  球形高分子材料是一种表面具有球形形貌的高分子聚合物材料,由于优良的化学稳定性和较高的比表面积,因而引起人们的广泛关注。酚醛树脂因其原料易得、价格相对低廉,并且具有杂质含量低、碳化残炭量高以及易于活化成孔等众多优点,是制备微球及其炭微球的一种理想材料。如果将酚醛树脂制成微球,不仅可以将其已有的各种优良性能发挥,还可以体现出聚合物微球的独特性能,从而可以进一步拓宽酚醛树脂的应用领域。近年来,酚醛树脂微/纳米微球材料及其炭微球材料被广泛用于能源存储与转化、催化、药物传输、催化、吸附分离、纳米器件、复合材料的构筑基元、传感等领域。

  酚醛树脂微球是指具有一定尺寸,外观为球形的酚醛树脂聚合物及其碳化物(碳球)。可分类为实心微球、中空微球、核壳结构微球以及多孔微球等。制备酚醛微球的方法也多种多样,如:stober法,悬浮聚合法、乳液聚合法、微乳液法、反向悬浮聚合法、发泡法、喷雾干燥法等。

  包括Liu Jian等(Extension of The Stober Method to the Preparation ofMonodisperse Resorcinol-Formaldehyde Resin Polymer and Carbon Spheres)以间苯二酚为单体,通过类stober法制备了具有单分散性的间苯二酚-甲醛微球,微球具有光滑的球形形貌,并在电催化、村呢个等领域具有潜在应用。Zhao Jian ming等(A Template-Freeand Surfactant-Free Method for High-Yield Synthes is of Highly Monodisperse3Aminophenol-Formaldehyde Resin and Carbon Nano/Microspheres)以3-氨基为单体,同样合成了表面光滑、具有良好单分散性的3-氨基酚/甲醛微球。专利(申请号201810144682.1)公开了一种含硒酚醛树脂微球的制备方法及其应用;Zhang Hong wei(Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with LargeTunable Pore Sizes)、Xu Hai long(Carbon Hollow Microspheres with a DesignableMesoporous Shell for High-Performance Electromagnetic Wave Absorption)、ChenAi bing(Nitrogen-doped hollow carbon spheres for supercapacitors application)等则以TEOS/TPOS为模板辅助合成空心结构酚醛微球,其表面均为球形光滑结构。

  微球作为制备炭微球的前体,其内外结构对炭微球的性能具有重要影响,如比表面积、孔体积、孔径等,而不同结构的炭微球又对其作为储能材料在新能源领域的应用具有重要的影响。而从我们对当前采用各种方法所制备微球的总结看出,微球结构都为球形且表面光滑结构。

  另一方面,由于甲醛中所含的水分以及缩聚产生的水,酚醛树脂生产过程会产生大量的废水,主要还有大量的酚、醛和低聚物,处理难度高、处理费用大。

  发明内容

  本发明所要解决的技术问题是提供一种凹凸结构酚醛树脂微球及其制备方法,解决传统表面光滑的酚醛树脂微球结构存在的生产过程产生的废料处理难度大,处理费用高的问题。

  为了解决上述技术问题,本发明采用的技术方案为:

  提供一种凹凸结构酚醛树脂微球,表面为凹凸粗糙结构,成分为酚醛树脂,所述微球粒径为30nm-1μm,表面比表面积为35-100m2/g。

  本发明的另一技术方案为提供一种上述凹凸结构酚醛树脂微球的制备方法,至少包括以下步骤:

  1)将热塑性酚醛树脂溶解在碱性溶液中得到碱性酚醛树脂溶液A;

  2)将酚醛树脂酸性废水与溶液A混合,加热反应;

  3)经过分离、干燥后得到酚醛树脂微球。

  本发明的有益效果在于:本发明的凹凸结构酚醛树脂微球,主要成分为酚醛树脂,具有碳化收率高,易于活化成孔,热稳定性优良等优点;其表面结构为凹凸球状,具有丰富的表观结构,可以作为制备新能源储能器件的电极材料,赋予了材料独特的表面特性和离子良好的附着空间。作为制备该微球的方法,具有制备方法简单、环保,成本低的优点,反应无需在高压反应釜中进行,适合规模化工业生产。

  附图说明

  图1为本发明具体实施方式的实施例1的微球的TEM图。

  具体实施方式

  为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。

  本发明提供一种凹凸结构酚醛树脂微球,其特征在于,表面为凹凸粗糙结构,成分为酚醛树脂,所述微球粒径为30nm-1μm,表面比表面积为35-100m2/g。

  上述凹凸结构酚醛树脂微球结构中,主要成分为酚醛树脂,具有碳化收率高,易于活化成孔,热稳定性优良等优点;其表面结构为凹凸球状,具有丰富的表观结构,可以作为制备新能源储能器件的电极材料,赋予了材料独特的表面特性,作为电极材料可以复赋予电解液离子良好的附着空间,提高材料的电化学性能。作为制备该微球的方法,具有制备方法简单、环保,成本低的优点,反应无需在高压反应釜中进行,适合规模化工业生产。

  本发明实施方式的一种凹凸结构酚醛树脂微球,成分为酚醛树脂。酚醛树脂是一种最早实现工业化生产的合成树脂,具有原材料来源广,生产工艺简单的优点,酚醛树脂本身具有热稳定性好,用于制备微球,具有碳化收率高,易成孔等优点。

  进一步的,本发明的凹凸结构酚醛树脂微球,不同于其他酚醛树脂微球,其表面具有凹凸粗糙结构,赋予微球更多表观特性。所述微球粒径为30nm-1μm,进一步优选的粒径下限可以为50nm、80nm或100nm中的一个,进一步优选的粒径上限可以为800nm、600nm、500nm中的一个。本发明所述的酚醛树脂微球具有纳米粒径,可以为其碳化后的炭微球提供更多的比表面积,赋予其丰富的孔洞结构,使其在电化学储能、催化、吸附等领域实现应用。

  进一步的,上述凹凸结构酚醛树脂微球中,所述酚醛树脂为不溶不熔交联结构酚醛树脂。交联结构的酚醛树脂具有硬质特性,使其在进一步的碳化过程中不至于粘结、塌陷和变形而影响表观特性。

  根据本申请的另一个方面,提供一种所述凹凸结构酚醛树脂微球的制备方法,至少包括以下步骤:

  1)将热塑性酚醛树脂溶解在碱性溶液中得到碱性酚醛树脂溶液A;

  2)将酚醛树脂酸性废水与溶液A混合,加热反应;

  3)经过分离、干燥后得到酚醛树脂微球。

  进一步的,所述热塑性酚醛树脂可以为本领域技术员熟悉的酚醛树脂,如苯酚-甲醛树脂、间苯二酚-甲醛树脂、3-氨基酚-甲醛树脂、双酚A-甲醛树脂或者各类改性树脂,包括但不限于腰果酚改性酚醛树脂、硼改性酚醛树脂、硅改性酚醛树脂、硒改性酚醛树脂中的一种或几种。

  进一步的,所述溶液A的固含量为0.1-10%。作为制备本发明的凹凸结构酚醛树脂微球,稀溶液体系是成球的关键,对溶液A的固含量有特定的要求,溶液A的固含量可以通过调节热塑性酚醛树脂与碱性溶液的配比来调控。溶液A的固含量过高,表观能低,分子间以吸附成团,只能形成片状无规树脂,但过低的固含量会使微球产品收率低,成本高,不利于工业化生产。在本发明中,溶液A的固含量也是影响微球粒径的主要因素,固含量高,微球粒径大,固含量越低,微球粒径越小,而粒径大小又深度影响微球的表面比表面积,为了获得本发明专利的30nm-1μm、表面比表面积为35-100m2/g微球,对溶液A的固含量的控制是一个关键因素。因此,本发明限定的溶液A的固含量上限为10%,所述溶液A的固含量可以进一步优先的上限为8%、5%、4%中的一种。本发明选取的溶液A的固含量下限为0.1%,进一步优先的下限可以为0.5%、0.8%、1.0%中的一种。为了进一步提高产品的均一性,可以对溶液A做进一步分离处理,去除不溶性杂质,分离方法包括但不限于沉淀、离心、过滤等。

  进一步的,所述碱为本领域人员所熟悉的碱性化合物或混合物,包括但不限于氢氧化钠、氢氧化钙、氢氧化镁或氢氧化钾中的一种。热塑性酚醛树脂在碱性溶液中具有良好的溶解性,可以形成分散均匀的溶液,为形成球形结构树脂微球提高良好基础。

  进一步的,所述碱性溶液的溶剂为水、甲醇、乙醇中的一种或者两种的组合。通过改变溶剂种类和用量,可以对微球的尺寸进行精确调控,本发明优选的溶剂为水,以减少有机溶剂的使用,具有更好的环保效益。

  酚醛树脂是以酚类和醛类经缩聚制备得到的树脂,其原材料醛如甲醛中含有大量的水,缩聚过程也产生缩合水,生产中必须将其脱出,以制备固态树脂。脱出的废水中含有大量的酚、醛、和可溶性小分子树脂,具有处理难度大、处理费用高的问题。本发明选取酚醛树脂生产过程中脱出的酚醛树脂酸性废水为制备凹凸结构酚醛树脂微球的原料,既能解决废水处理难题,又可获得新型酚醛树脂,具有制备工艺简单、成本低、环保的优点。

  本发明选取热塑性酚醛树脂碱性溶液与酚醛树脂酸性废水作为制备凹凸结构微球的原材料,主要机理在于:热塑性酚醛树脂碱性溶液中含有大量线型大分子树脂,并温稳定存在,而酚醛树脂酸性废水中含有大量酚、醛和可溶性树脂,热塑性酚醛树脂碱性溶液与酚醛树脂酸性废水混合后,体系的pH发生了变化,影响了热塑性酚醛树脂碱性溶液中树脂的稳定性,在稀溶液体系下,析出并形成液滴核,而酚、醛和可溶性树脂可以作为交联剂与热塑性酚醛树脂进一步反应,使核进一步增长,最终形成颗粒状树脂微球。同时,热塑性酚醛树脂与酚醛树脂酸性废水中的酚、醛和可溶性树脂反应形成的树脂在核上附着,创造了凹凸的粗糙结构。

  进一步的,所述酚醛树脂酸性废水的pH为1-5,酚含量为100-60000mg/L,醛含量为100-20000mg/L,COD为1000-300000mg/L。

  进一步的,本发明所述的酚醛树脂酸性废水的pH优选上限为4、3.5、3中的一种,下限为1.2、1.5、1.7中的一种,所述酚含量进一步优先上限为10000、6000、2000中的一种,下限可进一步优选为200、300、500中的一种。

  进一步的,所述酚醛树脂酸性废水与溶液A的质量比为1:0.25-4.5。合适的溶液配比是成球的关键,过高的碱溶液量使树脂的溶解性增加,不易于成球,过低的碱溶液用量也使树脂难以交联成球。本发明的酚醛树脂酸性废水与溶液A的质量比可进一步优选为1:0.5-2.5。

  进一步的,将酚醛树脂酸性废水与溶液A混合,采用酸或碱对混合物的pH进行调节,通过调节混合物pH,可以实现对微球粒径的控制,所述的碱可以选自氢氧化钠、氢氧化钾、氢氧化钡、氧化钙、氧化锌、氧化铝或氧化镁,所述的酸可以选自草酸、盐酸、硫酸、磷酸、膦酸、苯磺酸或对甲苯磺酸。

  进一步的,所述酚醛树脂酸性废水与溶液A混合物的反应温度为80-105℃,低的反应温度使其易工业化生产,生产工艺危险系数低。

  实施例1

  将热塑性苯酚-甲醛树脂2g溶解在50ml氢氧化钠水溶液中得到碱性酚醛树脂溶液;将50g酚醛树脂酸性废水(pH为2.3,酚含量为2512mg/L,醛含量为5548mg/L,COD为38546mg/L。)与碱性酚醛树脂溶液混合,调节pH为8.5,加热至100℃反应8h;用5000r/min的离心机分离5min,然后放入120℃烘箱中干燥后得到酚醛树脂微球。制备得到的酚醛酚醛树脂微球平均粒径为268nm,表面比表面积为48m2/g,请参照图1。

  其中,所述微球比表面积为物理吸附比表面积,可依据GB/T19587-2004气体吸附BET法得到,表面比表面积采用t-Plot法计算,平均粒径采用激光粒度仪测试。

  实施例2

  将热塑性苯酚-甲醛树脂2g溶解在50ml氢氧化钠水溶液中得到碱性酚醛树脂溶液;将95g酚醛树脂酸性废水(pH为1.8,酚含量为965mg/L,醛含量为4560mg/L,COD为18322mg/L。)与碱性酚醛树脂溶液混合,调节pH为8.0,加热至100℃反应12h;用5000r/min的离心机分离5min,然后放入120℃烘箱中干燥后得到酚醛树脂微球。制备得到的酚醛酚醛树脂微球平均粒径为186nm,表面比表面积为51m2/g。

  实施例3

  将热塑性腰果酚改性苯酚-甲醛树脂1.5g溶解在200ml氢氧化钾水溶液中得到碱性酚醛树脂溶液;将50g酚醛树脂酸性废水(pH为1.6,酚含量为15696mg/L,醛含量为6521mg/L,COD为87525mg/L。)与碱性酚醛树脂溶液混合,调节pH为9.0,加热至100℃反应12h;用5000r/min的离心机分离5min,然后放入120℃烘箱中干燥后得到酚醛树脂微球。制备得到的酚醛酚醛树脂微球平均粒径为632nm,表面比表面积为42m2/g。

  实施例4

  将热塑性硼改性酚醛树脂2g溶解在60ml氢氧化钠水溶液中得到碱性酚醛树脂溶液;将100g酚醛树脂酸性废水(pH为1.8,酚含量为4020mg/L,醛含量为5663mg/L,COD为19660mg/L。)与碱性酚醛树脂溶液混合,加热至95℃反应24h,用5000r/min的离心机分离5min、放入120℃烘箱中干燥后得到酚醛树脂微球。制备得到的酚醛酚醛树脂微球粒径为230nm,表面比表面积为63m2/g。

  进一步的,本发明专利还提供该酚醛树脂微球的一个应用,碳化后用于电极材料,方法如下:

  将酚醛树脂微球在700℃、N2保护下碳化2h,测试电化学性能。测试步骤包括:

  称取炭微球、乙炔黑和3%SBR-CMC混合物按质量比8:1:1比例混合均匀制成浆料(活性物质),然后将活性物质浆料涂敷在长条石墨纸粗糙部分,放入真空烘箱在100℃干燥5h。

  测试条件:采用三电极体系,活性物质所制备的电极为工作电极,Pt片为对电极,饱和甘汞电极为参比电极。电解液为1M的H2SO4溶液,扫描窗口:-0.2~0.8V,测试结果如表1所示。

  表1电性能测试结果

  

  从表中可以看出,以本发明所得的酚醛树脂微球碳化后作为电极材料制备电池具有高的容量和容量保持率,可以作为储能材料。

  综上所述,本发明提供的凹凸结构酚醛树脂微球,主要成分为酚醛树脂,具有碳化收率高,易于活化成孔,热稳定性优良等优点;其表面结构为凹凸球状,具有丰富的表观结构,可以作为制备新能源储能器件的电极材料,赋予了材料独特的表面特性和离子良好的附着空间,具有高的容量和容量保持率。作为制备该微球的方法,具有制备方法简单、环保,成本低的优点,反应无需在高压反应釜中进行,适合规模化工业生产。

  以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

《一种凹凸结构酚醛树脂微球及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)