欢迎光临小豌豆知识网!
当前位置:首页 > 纺织技术 > 天然纤维> 一种固体酸催化剂、碳纳米纤维的制备方法独创技术22751字

一种固体酸催化剂、碳纳米纤维的制备方法

2021-04-25 14:51:39

一种固体酸催化剂、碳纳米纤维的制备方法

  技术领域

  本发明涉及可持续发展与新材料技术领域,尤其涉及一种固体酸催化剂、碳纳米纤维的制备方法。

  背景技术

  纳米科技被认为将会带来未来新的工业革命,近些年来纳米科技的不断发展逐渐给一些重要的领域带来革命性的技术创新,如芯片制造,微电子,信息技术,能源,生物技术与医疗。纳米科技的发展也创造了各种形态的纳米材料,包括:纳米颗粒,纳米纤维,纳米棒,纳米线以及纳米片等。

  纳米纤维因为其特殊性能以及在传统工业和高技术领域巨大应用潜力受到广泛的关注,纳米纤维材料普遍认为其具有很大的表面体积比,表面多功能性,可调控孔隙特性,三维形貌,以及优异的机械性能等,其可能广泛应用于可再生组织工程,药物缓释,传感器件,能量产生与存储,过滤,催化,织物以及国防等不同领域。以化学组成来分,纳米纤维材料有四大类:碳纳米纤维,无机纳米纤维,有机纳米纤维以及复合纳米纤维。

  碳纳米纤维是继富勒烯,碳纳米管和石墨烯后一类具有重要应用价值的碳纳米材料。碳纳米纤维由于较好的导电性,高比表面,低密度以及稳定物化性能,其能广泛应用于催化,传感器,电子器件以及生物医药等领域。碳纳米纤维有两种制备途径:热处理电纺高分子纤维和催化气相沉积。

  由静电纺丝制备碳纳米纤维包括两个过程:高分子前体通过静电纺丝过程形成纤维,而后对纤维前体采取稳定化与碳化制得碳纳米纤维。静电纺丝过程适合成分与性能稳定单一的高分子前体,另外,静电纺丝纤维的后续稳定化与碳化还存一些技术问题,还无法实现较大规模制备。总体而言,采用静电纺丝过程制备碳纳米纤维的成本偏高,不太适合成分比较复杂的沥青类混合碳氢化合物前体,容易造成纤维结构不均一,纤维太短,热处理稳定性差等问题。

  气相沉积法包括电弧法,激光法以及化学催化气相沉积法,此类方法适用于实验室研究制备。

  发明内容

  鉴于上述的分析,本发明实施例旨在提供一种固体酸催化剂、碳纳米纤维的制备方法,用以解决现有静电纺丝过程制备碳纳米纤维的成本偏高且不适合利用成分比较复杂的沥青类混合碳氢化合物前体制备碳纳米纤维的技术问题。

  本发明是通过以下技术方案来实现的:

  一方面,本发明公开了一种固体酸催化剂,固体酸催化剂为磷钨酸-埃洛石固体酸;磷钨酸-埃洛石固体酸中磷钨酸的负载量为埃洛石质量的5~15%。

  另一方面,本发明还公开了一种固体酸催化剂的制备方法,用于制备上述的固体酸催化剂,磷钨酸-埃洛石固体酸由埃洛石粉体浸渍在磷钨酸水溶液中,固体干燥后在450~550℃的空气中煅烧0.5~1.5h后制备得到。

  再一方面,本发明还公开了一种碳纳米纤维的制备方法,采用上述的固体酸催化剂或制备的固体酸催化剂,具体包括如下步骤:

  步骤1、制备废旧高分子材料混合物;

  步骤2、废旧高分子材料混合物与磷钨酸-埃洛石固体酸混合后置于热解气化单元,热解气化反应温度为350~520℃,反应时间为15~45min,产物为热解气态混合物;

  步骤3、热解气态混合物导入碳纳米纤维催化沉积制备单元,利用负载于硅基片上的Ni-Cu双金属颗粒催化剂对热解气态混合物进行气相催化,气相催化沉积温度为550~950℃,反应完的产物在氩气流中冷却至室温,得到负载于硅基片上的碳纳米纤维。

  步骤4、将碳纳米纤维与硅基片完全浸渍于质量浓度为5~10%稀盐酸溶液,超声处理使碳纳米纤维从硅基片上分离;将分散有碳纳米纤维的稀盐酸溶液加热至60~90℃,加热时间为30~90min,将过滤后的碳纳米纤维清洗至pH值为中性,得到干燥的碳纳米纤维。

  进一步地,在步骤1中,将聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯和对苯二甲酸乙二酯中两种以上的废旧高分子塑料均匀混合,得到废旧高分子材料混合物。

  进一步地,步骤2中,热解气化过程在氩气流中进行;磷钨酸-埃洛石固体酸的添加量为废旧高分子材料混合物质量的5~25%。

  进一步地,在步骤3中,负载于硅基片上的Ni-Cu双金属颗粒的制备过程为:利用质量浓度为2~8%的氟化氢溶液对硅基片进行粗糙化处理,然后将硅基片表面完全浸润于甲酸镍-甲酸铜水溶液中,取出后干燥,并在温度高于220℃的条件下,甲酸镍/甲酸铜分解形成Ni-Cu双金属颗粒;

  Ni/Cu摩尔比为0.6~2.6。

  进一步地,在步骤3中,甲酸镍-甲酸铜水溶液中甲酸镍的质量浓度为10~20%,甲酸铜的质量浓度为8~18%。

  进一步地,在步骤3中,热解气态混合物通过氩气导入碳纳米纤维催化沉积制备单元中,氩气流的流速为60~600ml/min。

  进一步地,在步骤1中,将质量百分含量为25-45%的聚氯乙烯、15~20%的聚乙烯、20~25%的聚丙烯、15~20%的聚苯乙烯、5-10%的聚酯搅拌混合得到废旧高分子材料混合物。

  进一步地,以50r/min的搅拌速度机械搅拌混合得到废旧高分子材料混合物。

  进一步地,热解气化单元和碳纳米纤维催化沉积制备单元连通,热解气化单元设有第一温度检测元件和第一外加热和保温元件;碳纳米纤维催化沉积制备单元包括第二温度检测元件和第二外加热和保温元件;

  热解气化单元和碳纳米纤维催化沉积制备单元均设有氮气进口和氮气出口。

  与现有技术相比,本发明至少可实现如下有益效果之一:

  (1)本发明提供了一种固体酸催化剂,该固体酸催化剂为磷钨酸-埃洛石固体酸,是专门针对处理含氯废旧高分子塑料催化热解设计和制备的催化剂,磷钨酸-埃洛石固体酸的制备过程包括:将埃洛石粉体(300~800目)浸渍在磷钨酸水溶液中,固体干燥后在450~550℃的空气中煅烧0.5~1.5h后得到,磷钨酸-埃洛石固体酸中磷钨酸的负载量为埃洛石质量的5~15%。通过设计和制备磷钨酸-埃洛石固体酸催化剂,本发明实现了利用成分比较复杂的沥青类混合碳氢化合物前体制备碳纳米纤维,从而解决了废旧高分子塑料资源的回收利用问题。

  (2)本发明方法通过催化热解含氯废旧高分子作为气相催化沉积制备碳纳米纤维的碳源,用Ni-Cu双金属颗粒催化剂来制备碳纳米纤维。以含氯废旧高分子热解气化产物作为制备碳纳米纤维的原料,可以提供一种低成本碳纳米纤维制备的方法,同时解决现有废旧高分子塑料资源的高附加值循环利用率低的问题。

  (3)本发明在催化热解含氯废旧高分子同时直接利用产生的裂解产物为碳源生成碳纳米纤维,直接将原料处理与碳纳米纤维制备过程进行整合,是一种高效而低成本的制备方法。此类材料广泛应用于复合材料,电磁屏蔽,超薄显示器件,碳基半导体,检测器件,催化剂载体及锂电电极材料。

  附图说明

  附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制,在整个附图中,相同的参考符号表示相同的部件。

  图1为含氯废旧高分子塑料催化热解处理与碳纳米纤维制备的流程示意图;

  图2为碳纳米纤维的扫描电镜SEM图;

  图3为热解气化过程中涉及到的化学反应机理示意图。

  附图标记:

  1-载气引入管道;2-、3-载气;4-第一温度检测元件;5-第二温度检测元件;6-热解气化单元;7-碳纳米纤维催化沉积制备单元;8-第一外加热和保温元件;9-第二外加热和保温元件。

  具体实施方式

  下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。

  本发明公开了一种固体酸催化剂,该固体酸催化剂为磷钨酸-埃洛石固体酸,磷钨酸-埃洛石固体酸通过以下过程制备得到:将埃洛石粉体(300~800目)浸渍在磷钨酸(H3PW12O40·xH2O,CAS号12501-23-4)水溶液中,固体干燥后在450~550℃的空气中煅烧0.5~1.5h后得到,磷钨酸-埃洛石固体酸中磷钨酸的负载量为埃洛石质量的5~15%。

  需要说明的是,磷钨酸-埃洛石固体酸为本申请处理含氯废旧高分子塑料催化热解设计制备的催化剂,埃洛石粉体为多孔固体粉末,浸渍吸附磷钨酸水溶液,干燥得到负载磷钨酸的埃洛石固体粉末。将固体在450~550℃的空气中煅烧0.5~1.5h是为了稳定埃洛石孔隙结构中负载的磷钨酸,以及除去结构中吸附的水分子;浸渍吸附及热处理稳定为物理过程,埃洛石的化学分子式为Al2O3·2SiO2·4H2O。

  本发明提供了一种碳纳米纤维的制备系统,如图1所示,包括依次连通的热解气化单元和碳纳米纤维催化沉积制备单元,热解气化单元设有第一温度检测元件和第一外加热和保温元件,废旧高分子材料混合物与固体酸催化剂置于热解气化单元中;碳纳米纤维催化沉积制备单元包括第二温度检测元件和第二外加热和保温元件,负载于硅基片上的Ni-Cu双金属颗粒催化剂置于碳纳米纤维催化沉积制备单元中;分别向热解气化单元和碳纳米纤维催化沉积制备单元中通入载气氩气流,载气氩气流经过碳纳米纤维催化沉积制备单元后引出。

  本发明还提供了一种碳纳米纤维的制备方法,利用上述的碳纳米纤维的制备系统,该方法包括以下步骤:

  步骤1、将聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、对苯二甲酸乙二酯(PET)中的至少两种废旧高分子材料混合均匀,得到废旧高分子材料混合物;例如,将聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、对苯二甲酸乙二酯(PET)按照原料质量百分比PVC:25-45%、PE:15~20%、PP:20~25%、PS:15~20%、PET:5-10%进行混合,并以50r/min的搅拌速度机械搅拌得到废旧高分子材料混合物;

  步骤2、将废旧高分子材料混合物和催化剂磷钨酸-埃洛石固体酸混合后置于热解气化单元,热解气化过程在氩气流中进行,热解气化反应温度为350~520℃,反应时间为15~45min,热解气化过程中涉及到的化学反应机理如图3所示,产物为热解气态混合物;磷钨酸-埃洛石复合固体酸的使用量为含氯废旧高分子质量的5~25%;将热解气化反应温度及反应时间控制在此范围内,有利于废旧高分子材料混合物的裂解气化效率,同时避免出现结焦固化的情况发生。

  步骤3、热解气态混合物作为碳纳米纤维的碳源前驱体通过载气氩气流直接导入碳纳米纤维催化沉积制备单元中,载气氩气流的流速为60~600ml/min,本单元采用的催化剂为负载于硅基片上的Ni-Cu双金属颗粒Ni/Cu摩尔比为0.6~2.6。Ni-Cu双金属颗粒进行气相催化热解气态混合物,气相催化沉积温度为550~950℃,反应完的产物在氩气流中冷却至室温,最终得到碳纳米纤维。

  需要说明的是,将氩气流的流速控制在60~600ml/min范围内有利于热解产生的碳源分子快速有效地导入;将负载于硅基片上的Ni-Cu双金属颗粒Ni/Cu摩尔比控制在0.6~2.6范围有利于Ni和Cu催化剂的协同催化功能,制备所需结构与尺寸的碳纳米纤维。将气相催化沉积温度控制在550~950℃有利于发挥催化剂的最佳效果,促进结构规整碳纳米纤维的生成。

  需要强调的是,硅基片利用质量浓度为2~8%的氟化氢溶液处理使其表粗糙化,然后将其表面完全浸润于甲酸镍-甲酸铜水溶液中,取出空气中自然干燥,并在温度高于220℃的条件下,甲酸镍/甲酸铜分解形成Ni-Cu双金属颗粒;其中,甲酸镍-甲酸铜水溶液中甲酸镍(CAS号3349-06-2)的质量浓度为10~20%,甲酸铜(CAS号544-19-4)的质量浓度为8~18%。需要说明的是,将氟化氢质量浓度控制在2~8%范围有利于比较温和可控地对硅片表面实施粗糙化处理。

  

  步骤4、生成的碳纳米纤维与硅基片完全浸渍于质量浓度为5~10%稀盐酸溶液中,超声处理以将碳纳米纤维从硅基片上分离,超声频率为20kHz,处理温度30~50℃;将分散有碳纳米纤维的稀盐酸溶液加热至60~90℃,加热处理时间为30~90min,以除去残留的金属催化剂,过滤后的碳纳米纤维用去离子水继续清洗至pH值为中性,干燥即得到碳纳米纤维。碳纳米纤维采用氮气吸附,扫描电镜SEM进行表征,扫描电镜SEM表征结果如图2所示。

  需要说明的是,塑料产品化学性质稳定,在自然环境中不易降解,如果不能有效对其进行自然化应用,会造成大量的污染。特别是对一些含有氯、溴或其他杂原子塑料,燃烧过程会产生有毒物质造成严重的二次污染。从资源回收利用的角度来看,塑料是非常好的碳元素原料,通过高选择性催化过程,可以定向地得到有价值的化学品、燃料以及材料前体,同时最有效地利用其中的碳资源,避免较大的浪费及二次污染。

  本发明通过催化热解含氯废旧高分子作为气相催化沉积制备碳纳米纤维的碳源,用Ni-Cu双金属催化剂来制备碳纳米纤维。以含氯废旧高分子热解气化产物作为制备碳纳米纤维的原料,可以提供一种低成本碳纳米纤维制备的方法,同时解决现有废旧高分子塑料资源的高附加值循环利用率低的问题。

  实施例1

  本实施例提供了一种碳纳米纤维的制备方法,步骤如下:

  步骤1:废旧高分子均匀混合;

  将废旧聚氯乙烯(PVC)/聚乙烯(PE)/聚丙烯(PP)/聚苯乙烯(PS)/聚酯(PET)按照表1比例进行混合得到废旧塑料混合物。

  表1:废旧高分子材料混合物的组成

  

  步骤2:将废旧高分子材料混合物催化热解气化;

  将废旧高分子材料混合物100g与磷钨酸-埃洛石固体酸催化剂混合,加入量如表2所示。将上述混合物在管式热解炉中进行加热热解后得到混合物气体,混合物气体直接由载气导入碳纳米纤维催化沉积制备单元。载气为氩气,加热热解反应温度为460℃,在设定热解温度停留时间为30min。

  表2:废旧高分子材料混合物、固体酸催化剂的组成及结果

  

  步骤3:由废旧高分子催化热解气化中间产物制得碳纳米纤维;

  废旧高分子催化热解气化中间产物由氩气直接导入碳纳米纤维催化沉积制备单元,负载Ni-Cu催化剂(Ni/Cu摩尔比为1.6)的硅基片置于气化区的石英舟中,采用的温度为650℃;过程采用氩气为载气,气体流速范围为120ml/min。反应完的产物在氩气流中冷却至室温,最终得到碳纳米纤维。结果如表2所示。

  实施例2

  本实施例提供了一种碳纳米纤维的制备方法,步骤如下:

  步骤1:废旧高分子均匀混合;

  将废旧聚氯乙烯(PVC)/聚乙烯(PE)/聚丙烯(PP)/聚苯乙烯(PS)/聚酯(PET)按照表1比例进行混合得到废旧塑料混合物。

  步骤2:将废旧高分子材料混合物催化热解气化;

  将废旧高分子材料混合物100g与18g磷钨酸-埃洛石固体酸催化剂(磷钨酸负载量10%)混合。将上述混合物在管式热解炉中进行加热热解后得到混合物气体,混合物气体直接由载气导入碳纳米纤维催化沉积制备单元。载气为氩气,加热热解至反应温度,在设定热解温度停留一定时间,操作条件如表3所示。

  表3:废旧混合高分子催化热解气化条件及结果

  

  步骤3:由废旧高分子催化热解气化中间产物制得碳纳米纤维;

  废旧高分子催化热解气化中间产物由氩气直接导入碳纳米纤维催化沉积制备单元,负载Ni-Cu催化剂(Ni/Cu摩尔比为1.6)的硅基片置于气化区石英舟中,采用的温度为650℃;过程采用氩气为载气,气体流速范围为120ml/min。反应完的产物在氩气流中冷却至室温,最终得到碳纳米纤维,结果如表3所示。

  实施例3

  本实施例提供了一种碳纳米纤维的制备方法,步骤如下:

  步骤1:废旧高分子均匀混合;

  将废旧聚氯乙烯(PVC)/聚乙烯(PE)/聚丙烯(PP)/聚苯乙烯(PS)/聚酯(PET)按照表1比例进行混合得到废旧塑料混合物。

  步骤2:将废旧高分子材料混合物催化热解气化;

  将废旧高分子材料混合物100g与18g磷钨酸-埃洛石固体酸催化剂(磷钨酸负载量10%)混合。将上述混合物在管式热解炉中进行加热热解后得到混合物气体,混合物气体直接由载气导入碳纳米纤维催化沉积制备单元。载气为氩气,加热热解反应温度为460℃,在设定热解温度停留时间为30min。

  步骤3:由废旧高分子催化热解气化中间产物制得碳纳米纤维;

  废旧高分子催化热解气化中间产物由氩气直接导入碳纳米纤维催化沉积制备单元,负载Ni-Cu催化剂的硅基片置于气化区石英舟中,过程采用氩气为载气,采用的温度与气体流速如表4所示。

  表4:碳纳米纤维制备条件和结果

  

  

  反应完的产物在氩气流中冷却至室温,最终得到碳纳米纤维,结果如表3所示。

  实施例4

  本实施例提供了一种碳纳米纤维的制备方法,步骤如下:

  步骤1:废旧高分子均匀混合;

  将废旧聚氯乙烯(PVC)/聚乙烯(PE)/聚丙烯(PP)/聚苯乙烯(PS)/聚酯(PET)按照表5比例进行混合得到废旧塑料混合物。

  表5:废旧高分子材料混合物的组成

  

  步骤2:将废旧高分子材料混合物催化热解气化;

  将废旧高分子材料混合物100g与18g磷钨酸-埃洛石固体酸催化剂(磷钨酸负载量10%)混合,加入量如表2所示。将上述混合物在管式热解炉中进行加热热解后得到混合物气体,混合物气体直接由载气导入碳纳米纤维催化沉积制备单元。载气为氩气,加热热解反应温度为460℃,在设定热解温度停留时间为30min。

  步骤3:由废旧高分子催化热解气化中间产物制得碳纳米纤维;

  废旧高分子催化热解气化中间产物由氩气直接导入碳纳米纤维催化沉积制备单元,负载Ni-Cu催化剂(Ni/Cu摩尔比为1.6)的硅基片置于气化区的石英舟中,采用的温度为650℃;过程采用氩气为载气,气体流速范围为120ml/min。反应完的产物在氩气流中冷却至室温,最终得到碳纳米纤维,结果如表6所示。

  表6:碳纳米纤维的性能参数及结果

  

  实施例5

  本实施例提供了一种固体酸催化剂的制备方法,该固体酸催化剂为磷钨酸-埃洛石固体酸,磷钨酸-埃洛石固体酸通过以下过程制备得到:

  将埃洛石粉体(400目,化学分子式为Al2O3·2SiO2·4H2O)浸渍在磷钨酸(H3PW12O40·xH2O,CAS号12501-23-4)水溶液中,固体干燥后在500℃的空气中煅烧1.0h后得到,磷钨酸-埃洛石固体酸中磷钨酸的负载量为埃洛石质量的10%。

  本申请为处理含氯废旧高分子塑料催化热解设计制备的磷钨酸-埃洛石固体酸催化剂,埃洛石粉体为多孔固体粉末,浸渍吸附磷钨酸水溶液,干燥得到负载磷钨酸的埃洛石固体粉末。将固体在空气中煅烧一定时间是为了稳定埃洛石孔隙结构中负载的磷钨酸,以及除去结构中吸附的水分子。

  本发明提供的碳纳米纤维的制备方法与现有的静电纺丝制备碳纳米纤维方法相比,具有以下优势:

  本发明在催化热解含氯废旧高分子同时直接利用产生的裂解产物为碳源生成碳纳米纤维,直接将原料处理与碳纳米纤维制备过程进行整合,是一种高效而低成本的制备方法。

  现有技术中由静电纺丝制备碳纳米纤维包括两个过程:高分子前体通过静电纺丝过程形成纤维,而后对纤维前体采取稳定化与碳化制得碳纳米纤维。静电纺丝过程适合成分与性能稳定单一的高分子前体,而将含氯废旧高分子材料混合物处理成适合于静电纺丝的原料将是一个复杂和昂贵的转化过程;另外,静电纺丝纤维的后续稳定化与碳化还存一些技术问题,还无法实现较大规模制备。

  总体而言,采用静电纺丝过程制备碳纳米纤维的成本偏高,不太适合成分比较复杂的沥青类混合碳氢化合物前体,容易造成纤维结构不均一,纤维太短,热处理稳定性差等问题。气相沉积法包括电弧法,激光法以及化学催化气相沉积法,此类方法适用于实验室研究制备。

  本发明制备碳纳米纤维具有较好的导电性,高比表面,低密度以及稳定物化性能,此类材料广泛应用于复合材料,电磁屏蔽,超薄显示器件,碳基半导体,检测器件,催化剂载体及锂电电极材料。

  以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

《一种固体酸催化剂、碳纳米纤维的制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)