欢迎光临小豌豆知识网!
当前位置:首页 > 纺织技术 > 编织制作> 金属有机框架修饰的聚合物薄膜及其制备方法和应用独创技术14111字

金属有机框架修饰的聚合物薄膜及其制备方法和应用

2023-04-25 23:20:51

金属有机框架修饰的聚合物薄膜及其制备方法和应用

  技术领域

  本发明涉及电池隔膜材料,特别是涉及基于静电纺丝制备的金属有机框架修饰的聚合物薄膜制备方法。

  背景技术

  随着移动便携设备和电动车的发展,对于储能器件的性能提出了更高的要求,传统的锂离子电池体系的发展已发展到一个瓶颈,能量密度很难有进一步的突破。为了满足新时代的发展需求,研究新的电池体系迫在眉睫。锂硫电池相比于比传统的锂离子电池具有更高的理论容量(1675mAh g-1)和能量密度(2573 Wh kg-1),同时硫也具有成本低廉和环境友好的优势,使得其被广泛研究。然而,锂硫电池的发展受到许多不可避免的问题的影响,如硫的导电率低,硫在充放电过程中高达80%的体积膨胀问题,最严重的是,可溶性的多硫化物在循环过程中的会溶解在电解液中,由于商业化隔膜无法有效阻隔多硫化物,造成严重穿梭效应。

  为了解决上述问题,其中一个研究方向是基于隔膜的改性;主要包括隔膜上修饰一层阻隔多硫化物的物质,或者在正极和隔膜之间插入一个隔层,增加多硫化物的穿梭路径,来抑制锂硫电池的穿梭效应。但是这两种方法存在着一系列的问题,首先,隔膜上的修饰层,在充放电过程中,会从隔膜表面脱落,从而使得结构破坏,失去对多硫化物的阻隔作用,同时,修饰层和隔层的引入会降低电池整体的能量密度。因此,开发新型锂硫电池隔膜势在必行。

  发明内容

  本发明提出了一种可以有效抑制穿梭效应的金属有机框架修饰的聚合物薄膜及其制备方法,修饰在聚合物纳米纤维上的金属有机框架能够有效的抑制锂硫电池的穿梭效应,提高电池的电化学性能。

  为了实现上述目的,本发明的技术方案是:金属有机框架修饰的聚合物薄膜,其为不同类型的金属有机框架修饰在静电纺丝制备的聚合物纳米纤维表面,所述的金属有机框架从聚合物纳米纤维表面原位生长出来形成一个完整的复合结构,所述的聚合物薄膜的厚度在80-200μm,所述的金属有机框架的颗粒尺寸在50-100nm。

  按上述方案,所述的金属有机框架为含Ni、Co、Zn或Mn的金属有机框架,所述的聚合物纳米纤维为聚丙烯腈纳米纤维、聚偏氟乙烯纳米纤维或聚酰亚胺纳米纤维,所述的聚合物纳米纤维直径在150-350nm。

  所述的金属有机框架修饰的聚合物薄膜的制备方法,包括有以下步骤:

  1)将一定质量金属盐分散在N,N-二甲基甲酰胺中;

  2)在步骤1)所得溶液中加入一定质量的聚合物粉末并加热搅拌;

  3)将步骤2)所得溶液用于静电纺丝,得到含金属离子的纳米纤维薄膜;

  4)将步骤3)所得的纳米纤维薄膜,与二甲基咪唑,放入真空烘箱进行低压化学气相沉积,得到MOF修饰的聚合物薄膜。

  按上述方案,步骤1)中的金属盐为含Ni、Co、Zn或Mn的金属盐。

  按上述方案,步骤2)中聚合物为:聚丙烯腈、聚偏氟乙烯或聚酰亚胺。

  按上述方案,所述的N,N-二甲基甲酰胺的用量为15mL,金属盐的用量为1.2~1.8g,聚合物粉末的用量为1.5~2.0g。

  按上述方案,所述的加热搅拌温度为60-80℃,时间为6-12小时。

  按上述方案,步骤3)中静电纺丝的时间为10~24小时。

  按上述方案,步骤4)中,低压化学气相沉积的温度为100℃~140℃,时间为6~10小时。

  所述的金属有机框架修饰的聚合物薄膜作为锂硫电池隔膜应用。

  本发明的有益效果是:本发明基于静电纺丝技术,提出一种新型锂硫电池隔膜的制备方法。通过低压化学气相沉积在聚丙烯腈基纳米纤维薄膜表面原位修饰金属有机框架。首先,聚丙烯腈基纳米纤维薄膜具有良好的电解液润湿性以及热稳定性;其次,存在于纳米纤维表面的金属有机框架可以有效吸附多硫化物,抑制锂硫电池的穿梭效应。这些特性使得其直接用于锂硫电池隔膜时,能够提升锂硫电池的循环稳定性和倍率性能。本发明工艺简单,生产成本低,适用于大规模生产,有利于市场推广。

  附图说明

  图1是本发明实施例1的ZIF-67-PAN薄膜的X射线衍射图;

  图2是本发明实施例1的ZIF-67-PAN薄膜的形貌表征图;

  图3是本发明实施例1的ZIF-67-PAN薄膜的接触角测试图;

  图4是本发明实施例1的ZIF-67-PAN薄膜的TG测试图;

  图5是本发明实施例1的ZIF-67-PAN薄膜的锂硫电池电化学性能图。

  具体实施方式

  为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。

  实施例1:

  ZIF-67修饰的聚丙烯腈(PAN)基薄膜,它包括如下步骤:

  1)将1.2g Co(acac)2分散在15ml N,N-二甲基甲酰胺中;

  2)在步骤1)所得溶液中加入1.5g聚丙烯腈粉末并在70℃下加热搅拌10小时;

  3)将步骤2)所得溶液用于静电纺丝12小时,得到Co2+-PAN纳米纤维薄膜;

  4)将步骤3)所得纳米纤维薄膜,与二甲基咪唑,放入100℃真空烘箱进行低压化学气相沉积10小时,得到ZIF-67-PAN纳米纤维薄膜。

  5)将得到的ZIF-67-PAN纳米纤维薄膜直接用于锂硫电池隔膜,在氩气手套箱中进行锂硫电池的组装,并进行电化学性能测试。

  以本实例产物ZIF-67-PAN薄膜为例,图1是X射线衍射图,可以看出Co2+-PAN纳米纤维薄膜在经过低压化学气相沉积后成功在其中修饰了ZIF-67,并与拟合的ZIF-67标准XRD图谱峰位完全一致,无其它杂相。图2是ZIF-67-PAN薄膜的的扫描电子显微镜图像,可以看出组成该薄膜的纳米纤维尺寸均一,直径在200nm左右,ZIF-67-PAN纳米纤维表面均匀分布着直径在50nm左右的ZIF-67纳米颗粒,隔膜的厚度在135μm左右。图3是ZIF-67-PAN薄膜的接触角测试结果,可以看出它对电解液具有良好的润湿性。图4是ZIF-67-PAN薄膜的TG-DSC图,可以从DSC曲线看出,ZIF-67-PAN薄膜具有良好的热稳定性。

  本实施例制备的ZIF-67-PAN薄膜作为锂硫电池隔膜的应用如下:将得到的ZIF-67-PAN薄膜用冲片机冲成直径为1.9cm的圆形薄膜,直接用于锂硫电池组装。其中电解液为含1 M LiTFSI(双三氟甲烷磺酰亚胺锂)的DME(乙二醇二甲醚)、DOL(1,3-二氧戊环)溶液,两种溶剂的体积比为1:1,并添加1%质量比的LiNO3作为添加剂,在充放电过程中保护锂负极,CR2025型不锈钢为电池外壳组装成扣式锂硫电池。锂硫电池的制备方法其余步骤与通常的制备方法相同。

  图5为ZIF-67-PAN薄膜组装的锂硫电池的电化学性能测试图,可以清楚的所制备的新型隔膜组装的锂硫电池在循环性能以及倍率性能上都表现十分优异。在0.2 C的电流密度下,循环100圈后,仍能提供1177mAh g-1的理论容量,1 C电流密度下,循环300圈,容量衰减率仅为0.08%每圈。

  实施例2:

  ZIF-67修饰的聚偏氟乙烯(PVDF)基薄膜,它包括如下步骤:

  1)将1.2g Co(acac)2分散在15ml N,N-二甲基甲酰胺中;

  2)在步骤1)所得溶液中加入1.8g聚偏氟乙烯薄膜粉末并在65℃下加热搅拌8小时;

  3)将步骤2)所得溶液用于静电纺丝14小时,得到Co2+-PAN纳米纤维薄膜;

  4)将步骤3)所得纳米纤维薄膜,与二甲基咪唑,放入100℃真空烘箱进行低压化学气相沉积8小时,得到ZIF-67-PVDF纳米纤维薄膜。

  5)将得到的ZIF-67-PVDF纳米纤维薄膜直接用于锂硫电池隔膜,在氩气手套箱中进行锂硫电池的组装,并进行电化学性能测试。

  从得到的ZIF-67-PVDF薄膜,可以看出组成该薄膜的纳米纤维尺寸均一,直径在250nm左右,ZIF-67-PVDF纳米纤维表面均匀分布着直径在55nm左右的ZIF-67纳米颗粒,薄膜的厚度在140μm左右。在0.5 C的电流密度下,循环100圈后,仍能提供980mAh g-1的理论容量,1 C电流密度下,循环300圈,容量衰减率仅为0.06%每圈。

  实施例3:

  ZIF-67修饰的聚酰亚胺(PI)基薄膜,它包括如下步骤:

  1)将1.5g Co(NO3)2·6H2O分散在15ml N,N-二甲基甲酰胺中;

  2)在步骤1)所得溶液中加入1.8g聚酰亚胺粉末并在80℃下加热搅拌8小时;

  3)将步骤2)所得溶液用于静电纺丝12小时,得到Co2+-PI纳米纤维薄膜;

  4)将步骤3)所得双层纳米纤维薄膜,与二甲基咪唑,放入120℃真空烘箱进行低压化学气相沉积10小时,得到ZIF-67-PI薄膜。

  5)将得到的ZIF-67-PI纳米纤维薄膜直接用于锂硫电池隔膜,在氩气手套箱中进行锂硫电池的组装,并进行电化学性能测试。

  从得到的ZIF-67-PI薄膜,可以看出组成该薄膜的纳米纤维尺寸均一,直径在300nm左右,ZIF-67-PI纳米纤维表面均匀分布着直径在50nm左右的ZIF-67纳米颗粒,薄膜的厚度在125μm左右。在0.1 C的电流密度下,循环100圈后,仍能提供1007mAh g-1的理论容量,0.5 C电流密度下,循环300圈,容量衰减率仅为0.10%每圈。

  实施例4:

  ZIF-8修饰的聚丙烯腈(PAN)基薄膜,它包括如下步骤:

  1)将1.2g Zn(acac)2分散在15ml N,N-二甲基甲酰胺中;

  2)在步骤1)所得溶液中加入1.8g聚丙烯腈粉末并65℃下加热搅拌7小时;

  3)将步骤2)所得溶液用于静电纺丝10小时,得到Zn2+-PAN纳米纤维薄膜;

  4)将步骤3)所得纳米纤维薄膜,与二甲基咪唑,放入140℃真空烘箱进行低压化学气相沉积8小时,得到ZIF-8-PAN纳米纤维薄膜。

  5)将得到的ZIF-8-PAN纳米纤维薄膜直接用于锂硫电池隔膜,在氩气手套箱中进行锂硫电池的组装,并进行电化学性能测试。

  从得到的ZIF-8-PAN薄膜,可以看出组成该薄膜的纳米纤维尺寸均一,直径在200nm左右,ZIF-8-PAN纳米纤维表面均匀分布着直径在60nm左右的ZIF-8纳米颗粒,薄膜的厚度在150μm左右。在1 C的电流密度下,循环100圈后,仍能提供800mAh g-1的理论容量,2C电流密度下,循环300圈,容量衰减率仅为0.12%每圈。

  实施例5:

  ZIF-8修饰的聚丙烯腈(PAN)基薄膜,它包括如下步骤:

  1)将1.6g Zn(NO3)2·6H2O分散在15ml N,N-二甲基甲酰胺中;

  2)在步骤1)所得溶液中加入2.0g聚丙烯腈粉末并在75℃加热搅拌8小时;

  3)将步骤2)所得溶液用于静电纺丝16小时,得到Zn2+-PAN纳米纤维薄膜;

  4)将步骤3)所得纳米纤维薄膜,与二甲基咪唑,放入140℃真空烘箱进行低压化学气相沉积10小时,得到ZIF-8-PAN纳米纤维薄膜。

  5)将得到的ZIF-8-PAN纳米纤维薄膜直接用于锂硫电池隔膜,在氩气手套箱中进行锂硫电池的组装,并进行电化学性能测试。

  从得到的ZIF-8-PAN薄膜,可以组成看出该薄膜的纳米纤维尺寸均一,直径在200nm左右,ZIF-8-PAN纳米纤维表面均匀分布着直径在65nm左右的ZIF-8纳米颗粒,薄膜的厚度在180μm左右。在0.2 C的电流密度下,循环100圈后,仍能提供1100mAh g-1的理论容量,2 C电流密度下,循环500圈,容量衰减率仅为0.15%每圈。

  实施例6:

  ZIF-8修饰的聚偏氟乙烯(PVDF)基薄膜,它包括如下步骤:

  1)将1.2g Zn(acac)2分散在15ml N,N-二甲基甲酰胺中;

  2)在步骤1)所得溶液中加入1.5g聚偏氟乙烯粉末并在80℃下加热搅拌7小时;

  3)将步骤2)所得溶液用于静电纺丝10小时,得到Zn2+-PVDF纳米纤维薄膜;

  4)将步骤3)所得纳米纤维薄膜,与二甲基咪唑,放入130℃真空烘箱进行低压化学气相沉积10小时,得到ZIF-8-PVDF纳米纤维薄膜。

  5)将得到的ZIF-8-PVDF纳米纤维薄膜直接用于锂硫电池隔膜,在氩气手套箱中进行锂硫电池的组装,并进行电化学性能测试。

  从得到的ZIF-8-PVDF薄膜,可以看出组成该薄膜的纳米纤维尺寸均一,直径在250nm左右,ZIF-8-PVDF纳米纤维表面均匀分布着直径在80nm左右的ZIF-8纳米颗粒,薄膜的厚度在100μm左右。在1 C的电流密度下,循环200圈后,仍能提供750mAh g-1的理论容量,3C电流密度下,循环500圈,容量衰减率仅为0.12%每圈。

  实施例7:

  ZIF-8修饰的聚酰亚胺(PI)基薄膜,它包括如下步骤:

  1)将1.8g Zn(NO3)2·6H2O分散在15ml N,N-二甲基甲酰胺中;

  2)在步骤1)所得溶液中加入2.0g聚酰亚胺粉末在75℃条件下加热搅拌10小时;

  3)将步骤2)所得溶液用于静电纺丝20小时,得到Zn2+-PI纳米纤维薄膜;

  4)将步骤3)所得双层纳米纤维薄膜,与二甲基咪唑,放入140℃真空烘箱进行低压化学气相沉积12小时,得到ZIF-8-PI薄膜。

  5)将得到的ZIF-8-PI纳米纤维薄膜直接用于锂硫电池隔膜,在氩气手套箱中进行锂硫电池的组装,并进行电化学性能测试。

  从得到的ZIF-8-PI薄膜,可以看出组成该薄膜的纳米纤维尺寸均一,直径在250nm左右,ZIF-8-PI纳米纤维表面均匀分布着直径在85nm左右的ZIF-8纳米颗粒,薄膜的厚度在180μm左右。在0.5 C的电流密度下,循环100圈后,仍能提供987mAh g-1的理论容量,1 C电流密度下,循环300圈,容量衰减率仅为0.16%每圈。

《金属有机框架修饰的聚合物薄膜及其制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)