欢迎光临小豌豆知识网!
当前位置:首页 > 电学技术 > 电通讯技术> 用于数据存储装置的供电管理独创技术29222字

用于数据存储装置的供电管理

2021-04-25 10:43:11

用于数据存储装置的供电管理

  技术领域

  本文中公开的示例性实施例涉及电子装置中的电力管理。

  背景技术

  近场通信(NFC)芯片被用于执行各种应用程序。当被结合在智能电话或另一主机装置中时,NFC芯片能够使用单线协议与通用集成电路卡(UICC)通信,以此来访问个人数据。存储在UICC中的个人数据的例子包括无线用户信息、帐户信息、识别信息、电话号码、联系人、信用卡号和各种类型的控制信息。例如,为了在进行无线电子支付时对用户进行认证,或是为了支持其他应用程序时,可以通过NFC芯片将从UICC访问所得到的信息发送到外部装置。

  使用NFC芯片和UICC的装置具有许多缺点。例如,对UICC的所有电力供给都是由NFC芯片或通过NFC芯片提供的,而不管装置是处于开启或关闭状态。在这些或其他装置中,多路器(或其他形式的开关电路)被用于控制输送至UICC的电力。这些方法增加了NFC芯片的引脚数目,并且还需要监控操作来管理多路复用器的切换,即使NFC正处于关闭状态。这些缺点增加了设计的成本和复杂性,并且会消耗大量的电流。

  发明内容

  下面给出各种示例性实施例的简要概述。在下面的概述中可能会出现一些简化和省略,其旨在突出和介绍各种示例性实施例的一些方面,而不是限制本发明的范围。足以使本领域的普通技术人员制造和使用本发明概念的示例性实施例的详细描述将在后面的部分中给出。

  根据一个或多个实施例,一种芯片包括:第一引脚,其耦接到信号线;以及控制器,其使用第一引脚来检测信号线的状态,其中,该控制器用于基于信号线的第一状态来控制通过第一引脚向信号线输出第一电力,并基于信号线的第二状态来阻止通过第一引脚向信号线输出第一电力。信号线耦接成从电源向数据存储设提供第二电力备。第一状态可以是信号线上不存在第二电力,并且第二状态可以是信号线上存在第二电力。

  控制器可以:当没有通过第一引脚从信号线接收到基于第二电力的信号时,检测第一状态;并且当通过第一引脚从信号线接收到基于第二电力的信号时,检测第二状态。该芯片可以不包括从电源向数据存储装置传递电力的信号路径。

  该芯片可以包括第二引脚,其用于接收第三电力以向该芯片供电,其中,控制器基于不包括第二电力的第三电力来控制向信号线输出第一电力。该芯片可以包括第三引脚,其用于基于单线协议向数据存储装置输出数据/从数据存储装置接收数据。该芯片可以包括近场通信电路,其用于通过无线通信路径向数据存储装置发送数据/从数据存储装置接收数据。数据存储装置可以是通用集成电路卡(UICC),电源可以是移动终端。

  根据一个或多个实施例,一种用于管理电力的方法包括:使用芯片的第一引脚来检测信号线的状态,基于信号线的第一状态来控制通过第一引脚向信号线输出第一电力,以及基于信号线的第二状态来阻止通过第一引脚向信号线输出第一电力,其中,信号线被耦接成从电源向数据存储装置提供第二电力。

  第一状态可以是信号线上不存在第二电力,并且第二状态可以是信号线上存在第二电力。该方法可以包括:当没有通过第一引脚从信号线接收到基于第二电力的信号时,检测第一状态;以及当通过第一引脚从信号线接收到基于第二电力的信号时,检测第二状态。该方法可以包括:通过芯片的第二引脚接收第三电力,其中,第三电力用于为芯片供电,并且其中,基于不包括第二电力的第三电力来控制向信号线输出第一电力。该方法可以包括:基于单线协议通过芯片的第三引脚向数据存储装置输出数据或从数据存储装置接收数据。

  根据一个或多个实施例,一种非暂时性机器可读介质,其存储指令,这些指令使处理器:使用芯片的第一引脚来检测信号线的状态,基于信号线的第一状态来控制通过第一引脚向信号线输出第一电力,以及基于信号线的第二状态来阻止通过第一引脚向信号线输出第一电力,其中,信号线被耦接成从电源向数据存储装置提供第二电力。第一状态可以是信号线上不存在第二电力,并且第二状态可以是信号线上存在第二电力。

  这些指令可以使处理器:当没有通过第一引脚从信号线接收到基于第二电力的信号时,检测第一状态;并且当通过第一引脚从信号线接收到基于第二电力的信号时,检测第二状态。这些指令能够使处理器通过芯片的第二引脚接收第三电力,其中,第三电力用于为芯片供电,其中,基于不包括第二电力的第三电力控制向信号线第一电力输出。这些指令使处理器基于单线协议通过芯片的第三引脚向数据存储装置输出数据或从数据存储装置接收数据。第一电力和第二电力可以处于不同的水平。

  附图说明

  结合附图来考虑下面的详细描述和所附权利要求,本发明的其他目的和特征将更加清楚明白。虽然示出并描述了几个示例性实施例,但是在每个附图中相同的附图标记表示相同的部件,其中:

  图1示出了芯片的实施例;

  图2示出了包括在芯片中的电路的实施例;

  图3示出了用于管理电力的方法的实施例;以及

  图4示出了包括在芯片中的电路的另一实施例。

  具体实施方式

  应当理解,附图仅仅是示意性的并且不是按比例绘制的。还应当理解,在每个附图中使用相同的附图标记表示相同或相似的部件。

  说明书和附图说明了各种示例性实施例的原理。因此,应当理解,本领域的技术人员将能够设计出虽然未在此明确描述或示出,但体现本发明的原理并包括在其范围内的各种布置。此外,在此叙述的所有示例主要旨在清楚地用于教学目的,以帮助读者理解本发明的原理和由(一个或多个)发明人贡献的用以促进本领域的概念,并且应被解释为不限于此类具体叙述的示例和条件。另外,如本文所用,术语“或”是指非排他性的或(即,和/或),除非另外指明(例如,“或另一”或“或在替换方案中”)。而且,本文中所描述的各种示例性实施例未必相互排斥,因为一些示例性实施例可与一个或多个其他示例性实施例组合以形成新的示例性实施例。诸如“第一”、“第二”、“第三”等叙述语并不意味着限制所讨论的元件的顺序,而是用于区分一个元件与下一个元件,并且通常是可互换的。诸如最大值或最小值的值可以是预定的并且基于应用程序被设置为不同的值。

  图1示出了用于在电子系统中执行电力管理的芯片10的实施例。该电子系统可以是例如移动装置,诸如智能电话、平板电脑、个人数字助理、媒体播放器、笔记本计算机、物联网(IoT)装置,或其他类型的信息或处理终端。在一个实施例中,芯片10可以包括用于在电子系统和外部装置之间传送信号的近场通信集成电路(NFC IC)。例如,在一个实施例中,NFC IC能够通过近场无线链路向外部装置传送个人数据、金融数据、标识和/或其他数据。(未示出NFC IC的天线)。为了说明的目的,电子系统将被称为主机系统。

  除了芯片10之外,主机系统包括至少一个电源20、电力管理单元(PMU)30、以及用于耦接到数据存储装置50的信号线40。电源20通过引脚11和相应的信号线21向芯片10提供电力。该电力的至少一部分被用于操作芯片的接口15。电源20可以是用于为主机系统供电的电池,或者可以是其他类型的电源,例如适配器电源。在一个实施例中,主机系统可以包括多个电源,其中任何一个都可以用于通过引脚11向芯片10提供电力。

  在该实施例中,电源20还向主机系统的电力管理单元30提供电力。电力管理单元30可以包括电压调节器,用于调节接收到的电力水平以匹配数据存储装置50的操作规范。电力管理单元30通过信号线40向数据存储装置50输出经调节的电力,例如,以便支持数据写入和读取操作。电力管理单元30还可以通过另一信号线60与数据存储装置50双向通信,且信号线60的信号传递独立于信号线40。信号线60可以基于预定的协议(例如,预定类型的ISO协议)来进行通信。

  电力管理单元30中的控制器能够确定何时(例如,基于已存储的指令)通过信号线40和信号线60传送信号。例如,可以如已存储的指令所确定的,电力管理单元可以在主机系统通电时通过信号线40向数据存储装置50输出经调节的电力,并且与数据存储装置50进行通信。

  数据存储装置50可以是主机系统中的任何类型的可移动或固定存储装置。在一个实施例中,数据存储装置50可以是可拆卸的用户身份模块(SIM)卡,而主机系统可以是智能电话。在一个特定的实施例中,数据存储装置50可以是可拆卸的通用集成电路卡(UICC)。为了说明的目的,数据存储装置被标记为外部UICC 50,而接口15被标记为SIM接口。

  芯片的接口15包括控制二器18和存储器19。存储器19存储指令(例如,固件),这些指令由控制器18执行以执行涉及UICC 50的一个或多个操作。这些操作包括通过引脚12(例如Pin 2或P2)向UICC 50发送数据和/或从UICC 50接收数据。该引脚可以耦接到信号线70,信号线70例如可以是单线协议(SWP)线。引脚P2可以例如通过单线输入/输出衬垫90耦接到接口15。信号线70上传送的数据可以是任何类型的数据,包括但不限于前面所讨论过的例子。

  根据一个或多个实施例,接口15还执行涉及UICC 50的电力控制操作。这是通过使用同一引脚14执行检测操作和电力操作来实现的。与已经提到过的其他芯片(包括NFC芯片)相比,仅使用一个引脚来实现这些目的,减少了芯片10的引脚数目,减少了占用的空间,降低了功耗,并且提供了更简单的设计方案。

  更具体地,在一个实施例中,芯片的接口15包括耦接到信号线40的引脚(Pin 1或P1),信号线40在各种情况下直接向UICC 50提供电力。这种直接的电力供应还包括将来自电力管理单元的电力通过信号线40沿着不经过芯片10的路径提供给UICC的情况。在所提到的其他芯片中,提供给UICC的电力首先被提供给芯片,然后再由芯片提供给UICC。在这些其他芯片中,通过一个引脚从电源接收电力,然后该芯片再通过一个不同的引脚向UICC提供电力。这种布置消耗了大量的电力并增加了所需的引脚数。相反,通过仅使用一个引脚同时作为输入引脚和输出引脚,芯片10能够实现性能改进。

  控制器18基于存储在存储器19中的指令控制涉及引脚14(Pin 1)的操作。在一个实施例中,控制器18执行监控操作以检测信号线40的状态。监控操作可以包括通过引脚14检测信号线40上的电压水平。信号线40上不存在电压(第一状态)可以指示没有从电力管理单元30通过信号线40向UICC提供电力。例如,这可能在主机系统断电或处于低功率状态时发生。当基于通过引脚14接收到的信号检测到信号线40处于第一状态时,控制器18可以通过相同的引脚14向信号线40输出电力。然后,该电力沿着信号线40的剩余部分输送以向UICC供电。控制器18可以例如基于通过引脚11(例如,Pin 3或P3)从电源20接收到的电力,向处于第一状态的UICC输出电力。在一个实施例中,该电力可以不包括来自电力管理单元30的电力输出。

  当控制器18检测到信号线40上存在电压(第二状态)时,这可以指示正在从电力管理单元30通过信号线40向UICC提供电力。当这种情况发生时,并行于电力管理单元30向UICC提供电力,控制器18可以通过引脚14和信号线40向UICC提供电力。在另一实施例中,控制器18可以关闭或阻止通过引脚14和信号线40向UICC输出电力,因为在这种状态下,UICC已经由电力管理单元30通过信号线40直接供电。在后一种情况下,检测器可以检测到从电力管理单元30到UICC的电力输出,并向控制器18发送指示该输出的信号。

  在一个实施例中,控制器18不是仅仅检测信号线40上存在或不存在电压,而是可以检测信号线40上的一定水平的电压或电流,作为对UICC执行电力操作的先决条件。检测信号线40上的一定水平(或范围)的电压或电流,可以更准确地指示芯片的接口15何时执行电力操作,例如通过减少由噪声、耦接和/或其他效应产生的杂散信号。

  根据一个或多个实施例,通过仅使用一个输入/输出引脚14(P1)来接收(并检测)从主机系统(例如,通过电力管理单元30)提供给UICC的电力,并在信号线40处于不同状态时向UICC提供电力,可以显著地节省电力。例如,在智能电话开启时,不由NFC IC芯片10提供在其他设计中NFC芯片所提供的电流量(例如,60mA)。相反,该电流由主机系统(例如,电力管理单元30)通过信号线40直接提供给UICC。因此,相对于其他(例如NFC)芯片,芯片10的尺寸可以例如通过减少芯片引脚的数量而减小。例如,40nm的UICC供电管理特征的尺寸可以从0.29mm2减小到0.14mm2,与其他设计相比,这相当于减小了约0.15mm2的空间。考虑到NFC芯片的销售量大约为每年2.5亿个,这代表着可以节省约$1.5M的成本。

  而且,当智能电话关闭(或处于低功率模式)时,控制器18可以单独向UICC 50提供电力(例如,10mA电流),例如以便支持芯片与UICC 50之间通过信号线70(经由引脚P2)进行的SWP通信。通过这些实施例,可以不执行在所提到的其他设计中执行的监视操作(其消耗大量电力),从而使得电流消耗显著减少。

  另外,因为来自主机系统(PMU 30)的电力和来自芯片10的电力被并行地提供给UICC,所以芯片的控制器18仍然可以与UICC通信,并且主机仍然可以经由ISO信号线60与UICC通信,它们之间彼此独立,即使在主机系统和芯片都正在执行操作的情况下也是如此。此外,可以以对主机系统和UICC都透明的方式来执行芯片10的电力控制特征。而且,与其他设计相比,芯片10可实现的尺寸减小(如前所述),可以减小芯片与主印刷电路板的互连特征(例如,可能需要的焊球更少)。而且,因为一个或多个实施例可以是固件驱动的,所以由芯片实施的在执行电力控制和/或与IC的SWP通信方面的任何改变都可以简单地通过改变存储在存储器19中的固件来实现(例如,不需要用新的芯片来替换现有芯片)。

  图2示出了接口15的电路实施例,其包括第一电压调节器210、电流控制器220、第二电压调节器230、开关240以及监视器250。在此实施例中,电压调节器可以是低压差(LDO)电压调节器,且引脚11(P3)可以对应于VBAT引脚,引脚12(P2)可以对应于供电电压SWIOVCC,且引脚14(P1)可以对应于SIMVCC引脚。

  参照图2,当主机系统正在向UICC 50提供电力时,监视器250检测到一个高于预定值的电压沿着耦接到SIMVCC引脚(P1)的信号线280流动。在一个实施例中,主机系统可以输出符合预定标准的电压。对于SIM标准,该电压可以是3V。

  当检测到耦接到SIMVCC引脚的信号线280上的电压高于预定值时(例如,当主机装置处于开启状态或正常功率模式时),监视器250向接口15内的控制器18输出两个信号SIMVCC_OK和SIMVCC_CLASSB。在此情况下,第一信号SIMVCC_OK具有指示信号线40(其耦接到接收SIMVCC供电的引脚)上存在电压的第一值。第二信号SIMVCC_CLASSB指示检测到的电压的水平。检测到的电压可以具有以下两个水平之一:指示主机系统(例如,PMU 30)正在向UICC提供电力的第一水平(例如,3V)或指示接口正在向UICC提供电力的第二水平(例如,1.8V)。(在一个实施例中,控制器18可以包括图2所示的电路。在另一实施例中,控制器18可以耦接到图2所示的电路,例如耦接到监视器250。)

  当SIMVCC_OK信号值指示已经检测到电压并且SIMVCC_CLASSB信号值指示检测到的电压是第一水平(例如,3V)时,控制器(或固件)产生信号以阻止第一电压调节器210向UICC提供电力(通过SIMVCC引脚)。此时,下拉电路270被禁用。下拉电路是基于沿着信号线40传输的来自主机系统的电力输入而被禁用的。例如,通过SIMVCC引脚接收的电力被输入到NMOS晶体管292的栅极,产生接地路径。此时生成具有逻辑0值的SIMVCC_NOK信号,其关断NMOS晶体管272并禁用下拉电路270。

  当检测到耦接到SIMVCC引脚的信号线280上的电压低于预定值时(例如,当主机装置处于关闭状态或低功率模式时),监视器250输出具有第二值的信号SIMVCC_OK,该第二值指示主机系统没有正在沿着信号线40向UICC提供电力。在这种情况下,控制器(通过固件)将从第一电压调节器210输出的电力耦合到SIMVCC引脚,以便通过信号线40为UICC供电。例如,预定值可以在1.8V和3.0V之间,以便使得监视器(或固件)能够区分主机系统正在向UICC供电的情况和接口15正在向UICC供电的情况。

  第一电压调节器210可以基于通过VBAT(P3)引脚接收的电池电力输出处于第二水平(1.8V)的电压。第一电压调节器可以包括放大器212,其调节电池电压以产生通过PMOS晶体管214的输出电流。可以由放大器212基于耦接到参考电压的第一输入216和耦接到反馈回路的第二输入280来调节电池电压,反馈回路耦接到放大器的输出。反馈回路可以操作以将经调节的电压保持在一个稳定的水平(例如,1.8V)。例如,当主机系统处于低功率模式时,放大器的尺寸可以足以提供10mA的电流来为UICC供电。此时,由第一电压调节器210(通过SIMVCC引脚)提供给UICC的电力足以支持各种操作,包括但不限于通过SWP线70传输数据。

  为了将经放大器调节的电力耦合到信号线280,控制器(在固件的控制下)可以产生信号以接通VDD开关222。此时,接通VDD开关222会干扰从第一电压调节器210提供的特定水平(例如,1.8V)的电力。为了补偿(例如,减小或消除)接通VDD开关222所导致的第一电压调节器210的输出的任何变化,控制器可以生成控制信号以启用开关涌入电流控制器224。在一个实施例中,涌入电流控制器224可以逐渐接通VDD开关222,以抵消对从第一电压调节器210输出的电压水平的任何干扰,从而允许将来自第一电压调节器210的电力耦合到信号线280,并因此耦合到SIMVCC引脚14。

  在一个实施例中,可以在VDD引脚和电流控制器220之间耦接开关,以在这些情况下将VDD引脚与电流控制器220断开。此外,在一个实施例中,第一电压调节器210的输出信号可以沿着不经过电流控制器220的信号路径耦合到信号线280。

  在将电力从第一电压调节器210切换到信号线280之前,信号线280上的低(或零)电压使晶体管292关断。因此,SIMVCC_NOK信号将具有基于VBAT电压的逻辑高值。SIMVCC_NOK信号的逻辑高值将使晶体管272接通,使得下拉电路270下拉(或接地)信号线280。因此,下拉电路可以去除所有可能会使从第一电压调节器210提供给UICC的电力的水平(例如,1.8V)偏移的残余或杂散信号。

  当监视器250检测到SIMVCC引脚14的电压水平低于预定值(指示HOST现在正在为UICC供电)时,则SIMVCC_OK信号为高,并且SIMVCC_CLASSB的值可以指示UICC的类别。已知SWIO衬垫仅被供给1.8V的情况下,控制器可以相应地控制向SWIO衬垫的供电。在一个实施例中,如果SIMVCC=1.8V,则晶体管240可以切换为向SWIOVCC供电。如果SIMVCC=3V,则晶体管234可以切换为向SWIOVCC供电。在一个实施例中,当SIMVCC=1.8V时,则SIMVCC_OK=1且CLASSB=0。当SIMVCC=3V时,则SIMVCC_OK=1且CLASSB=1。在这些情况下,可以使用第二电压调节器230或晶体管240来向SWIOVCC供电,以确保1.8V。

  第二调压器230可以用于在UICC从主机系统接收电力(例如,3V)时提供电力以控制向UICC 50输出数据(或其他信号)。SWP(或SWIO)线70应当以预定水平被供电,以便支持数据传送。根据一个标准(例如ETSI规范),SWP线应当以1.8V被供电,但是在另一实施例中,该线可以由不同的电压水平被供电。电力能够通过SWIOVCC引脚(P2)传递到SWP线。

  当监视器250检测到主机系统正在向UICC提供电力(例如,3V)时,控制器(通过固件)可以产生控制信号以关断SWIOVCC开关240。这在这些情况下可以有效地将SIMVCC从SWIOVCC引脚断开。然后,第二电压调节器230的放大器232可以将通过SIMVCC引脚接收的电力(例如,由主机系统提供给UICC的电力)调节成对应于预定水平。放大器232可以具有耦合到地的一个输入和耦合到反馈回路的另一个输入,以通过晶体管234提供稳定的电流。

  一旦已经将电力调节到预定水平,就可以通过SWIOVCC引脚输出电力,以支持通过SWP线70进行数据通信。(未示出实际发送来自NFC电路的数据或接收来自UICC(例如,收发器)的数据的电路,但该电路基于通过SWIOVCC引脚提供的电力进行操作)。

  当监视器250检测到主机系统没有正在通过信号线40向UICC提供电力并且此时将要沿着信号线70发送数据时,电流控制器电路220将控制提供给SIMVCC引脚的电力。例如,当主机系统没有正在为UICC供电时,SIMVCC引脚处的电压为0V或者太低而不能被第二电压调节器调节。因此,控制器(通过固件)激活电流控制器224以接通VDD开关222。在一个实施例中,电流控制器224可以是用于防止VDD压降的涌入电流控制器。接通VDD开关222将来自VDD引脚的电力耦合到SIMVCC引脚,该电力的水平(例如,提供10mA)足以提供UICC所需的电力。此时,控制器(通过固件)可以产生控制信号以接通晶体管240以将SIMVCC(其来自VDD)连接到SWIOVCC引脚以进行SWP通信。

  当由接口向SIMVCC引脚提供电力(例如,提供给NFC电路的电池电力)并且在此期间主机系统接通时,NFC电路可以在此时结束SWP线70上的通信,然后接口15将停止向SIMVCC引脚提供电力,以允许主机系统向UICC供电。

  图3示出了用于电力管理的方法的实施例,该方法用于电子系统中的或耦接到电子系统的数据存储装置。该方法可以例如通过同一主机系统内的如图1所示出的芯片和/或其接口的一个或多个实施例,或者通过不同的芯片和/或主机系统来执行。

  参照图3,该方法包括,在310,使用芯片的第一引脚来检测信号线的状态。信号线可以是信号线40,第一引脚可以是芯片10的引脚P1。在320,该方法包括,基于信号线的第一状态来控制通过第一引脚向第一信号线输出电力。第一电力可以是基于通过引脚P3接收的电力(例如,电池电力),并且信号线40的第一状态可以对应于当接口15的控制器18没有通过第一引脚检测到电压的时候,或者当没有在信号线40上检测到预定电压水平或范围的时候。在330,该方法包括,基于信号线的第二状态来阻止通过第一引脚P1向信号线40输出第一电力。信号线的第二状态是当在信号线40上检测到电压(或预定电压水平或范围)的时候。检测到这种电压表示主机系统的电力管理单元30正在向UICC供电。在340,该方法可以包括通过芯片的第三引脚12(P2)通过SWP线向UICC输出数据或从UICC接收数据。可以从UICC接收或向UICC输出该数据,例如与NFC芯片10所执行的近场通信相关。

  根据另一实施例,非暂时性机器可读介质存储指令,这些指令使处理器执行本文所描述的芯片和方法实施例的操作。例如,存储在计算机可读介质中的指令可以使处理器使用芯片的第一引脚P1检测信号线40的状态,基于信号线40的第一状态来控制通过第一引脚P1向信号线40输出第一电力,并且基于信号线40的第二状态来阻止通过第一引脚P1向信号线40输出第一电力,其中,信号线被耦接成从电源(例如,电力管理单元30)向数据存储装置(例如,UICC 50)提供第二电力。例如,处理器可以对应于控制器18,并且计算机可读介质可以对应于存储器19。

  图4示出了可以包括在芯片10中的接口115的另一实施例。接口115可以具有与图2中的接口15相同的特征,除了省略了电流控制器220并且添加了开关410。更具体地说,在该实施例中,VDD引脚耦接到晶体管240而不经过电流控制器220。因此,基于晶体管240的切换而不是如图2所示的基于晶体管240和VDD开关222(在本实施例中省略)的切换,将来自VDD引脚的电力引导至SWIOVCC引脚(P2)。此外,来自VBAT(P3)引脚11的电力被耦合到信号线280,而不经过电流控制器220。沿着信号线280包括开关410,以将电力从VBAT引脚(P3)传递到SIMVCC引脚14。可以基于来自控制器的控制信号来切换开关(例如,MOSFET)。

  在另一实施例中,可以修改图4,使得VDD引脚连接到晶体管214的输出。在这种情况下,如果LDO1210专用于向UICC供电,则可以不使用开关410。

  在本文中公开的实施例中的控制器、检测器、单元以及其他信号生成和信号处理特征可以在逻辑中实现,逻辑例如可以包括硬件、软件或两者。当至少部分地在硬件中实现时,控制器、检测器、单元以及其他信号生成和信号处理特征可以是例如各种集成电路中的任何一个,包括但不限于专用集成电路、现场可编程门阵列、逻辑门的组合、片上系统、微处理器、或其他类型的处理或控制电路。

  当至少部分地以软件实现时,控制器、检测器、单元以及其他信号生成和信号处理特征可以包括例如用于存储由例如计算机、处理器、微处理器、控制器或其他信号处理装置执行的代码或指令的存储器或其他存储装置。计算机、处理器、微处理器、控制器或其他信号处理装置可以是在此描述的那些或除了在此描述的元件之外的一个。因为详细描述了形成这些方法(或计算机、处理器、微处理器、控制器或其他信号处理装置的操作)的基础的算法,所以用于实现这些方法实施例的操作的代码或指令可以将计算机、处理器、控制器或其他信号处理装置变换成用于执行在此描述的方法的专用处理器。

  所述的任何益处、优点、对问题的解决方案,以及任何可以使各种益处、优点或解决方案出现或变得更显著的元素不被解释为任何或所有权利要求的关键的、必需的或基本的特征或元素。本发明仅由所附权利要求来限定,所附权利要求包括在本申请未决期间进行的任何修改以及所发布的那些权利要求的所有等同物。

  尽管已经具体参考本发明的某些示例性方面详细描述了各种示例性实施例,但是应当理解,本发明能够适用于其他示例性实施例,并且其细节能够在各种显而易见的方面进行修改。对于本领域的技术人员显而易见的是,在本发明的精神和范围内可以进行变更和修改。因此,前述公开、描述和附图仅用于说明的目的,并不以任何方式限制本发明,本发明仅由权利要求限定。

《用于数据存储装置的供电管理.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)