欢迎光临小豌豆知识网!
当前位置:首页 > 电学技术 > 电通讯技术> 用于不具有授权的上行链路传输的用户设备、基站和方法独创技术85977字

用于不具有授权的上行链路传输的用户设备、基站和方法

2021-04-25 00:55:11

用于不具有授权的上行链路传输的用户设备、基站和方法

  相关申请

  本申请涉及2018年2月14日提交的名称为“USER EQUIPMENTS,BASE STATIONS ANDMETHODS FOR UPLINK TRANSMISSION WITHOUT GRANT”的美国临时专利申请No.62/630,732并且要求该美国临时专利申请的优先权,该美国临时专利申请据此全文以引用方式并入本文。

  技术领域

  本公开整体涉及通信系统。更具体地,本公开涉及用于不具有授权的上行链路传输的用户设备、基站和方法。

  背景技术

  为了满足消费者需求并改善便携性和便利性,无线通信设备已变得更小且功能更强大。消费者已变得依赖于无线通信设备,并期望得到可靠的服务、扩大的覆盖区域和增强的功能性。无线通信系统可为多个无线通信设备提供通信,每个无线通信设备都可由基站提供服务。基站可以是与无线通信设备通信的设备。

  随着无线通信设备的发展,人们一直在寻求改善通信容量、速度、灵活性和/或效率的方法。然而,改善通信容量、速度、灵活性和/或效率可能会带来某些问题。

  例如,无线通信设备可使用通信结构与一个或多个设备通信。然而,所使用的通信结构可能仅提供有限的灵活性和/或效率。如本讨论所示,改善通信灵活性和/或效率的系统和方法可能是有利的。

  附图说明

  图1是示出可在其中实施用于不具有授权的上行链路传输的系统和方法的一个或多个基站(gNB)以及一个或多个用户设备(UE)的一个具体实施的框图;

  图2示出了固定周期边界和灵活周期边界的示例;

  图3示出了用于重复的时域资源的示例;

  图4示出了用于重复的时域资源的其他示例;

  图5是示出用于下行链路的资源网格的一个示例的图示;

  图6是示出用于上行链路的资源网格的一个示例的图示;

  图7示出了几个参数的示例;

  图8示出了参数的子帧结构的示例;

  图9示出了时隙和子时隙的示例;

  图10示出了调度时间线的示例;

  图11示出了DL控制信道监视区域的示例;

  图12示出了包括多于一个控制信道元素的DL控制信道的示例;

  图13示出了UL控制信道结构的示例;

  图14是示出gNB的一个具体实施的框图;

  图15是示出UE的一个具体实施的框图;

  图16示出了可在UE中利用的各种部件;

  图17示出了可在gNB中利用的各种部件;

  图18是示出可在其中实施用于不具有授权的上行链路传输的系统和方法的UE的一个具体实施的框图;并且

  图19是示出可在其中实施用于不具有授权的上行链路传输的系统和方法的gNB的一个具体实施的框图。

  具体实施方式

  本发明描述了一种用户设备(UE)。该UE包括接收电路,该接收电路被配置为接收包括用于配置周期性的第一参数的无线电资源控制(RRC)消息。该接收电路还被配置为接收包括用于配置重复数量的第二参数的RRC消息。该UE还包括发送电路,该发送电路被配置为基于第一参数和第二参数执行传输块的传输的重复。不期望UE被配置有比该周期内的时隙数量大的重复数量。

  本发明还描述了一种基站装置。该基站装置包括发送电路,该发送电路被配置为发送包括用于配置周期性的第一参数的无线电资源控制(RRC)消息。该发送电路还被配置为发送包括用于配置重复数量的第二参数的RRC消息。该基站装置还包括接收电路,该接收电路被配置为基于第一参数和第二参数接收传输块的传输的重复。未配置比该周期内的时隙数量大的重复数量。

  还描述了一种UE的通信方法。该方法包括接收包括用于配置周期性的第一参数的无线电资源控制(RRC)消息。该方法还包括接收包括用于配置重复数量的第二参数的RRC消息。该方法还包括发送电路,该发送电路被配置为基于第一参数和第二参数执行传输块的传输的重复。不期望UE被配置有比该周期内的时隙数量大的重复数量。

  还描述了一种基站装置的通信方法。该方法包括发送包括用于配置周期性的第一参数的无线电资源控制(RRC)消息。该方法还包括发送包括用于配置重复数量的第二参数的RRC消息。该方法还包括基于第一参数和第二参数接收传输块的传输的重复。未配置比该周期内的时隙数量大的重复数量。

  第3代合作伙伴项目(也称为“3GPP”)是旨在为第三代和第四代无线通信系统制定全球适用的技术规范和技术报告的合作协议。3GPP可为下一代移动网络、系统和设备制定规范。

  3GPP长期演进(LTE)是授予用来改善通用移动通信系统(UMTS)移动电话或设备标准以应付未来需求的项目的名称。在一个方面,已对UMTS进行修改,以便为演进的通用陆地无线电接入(E-UTRA)和演进的通用陆地无线电接入网络(E-UTRAN)提供支持和规范。

  本文所公开的系统和方法的至少一些方面可结合3GPP LTE、高级LTE(LTE-A)和其他标准(例如,3GPP第8、9、10、11和/或12版)进行描述。然而,本公开的范围不应在这方面受到限制。本文所公开的系统和方法的至少一些方面可用于其他类型的无线通信系统。

  无线通信设备可以是如下电子设备,其用于向基站传送语音和/或数据,基站进而可与设备的网络(例如,公用交换电话网(PSTN)、互联网等)进行通信。在描述本文的系统和方法时,无线通信设备可另选地称为移动站、UE、接入终端、订户站、移动终端、远程站、用户终端、终端、订户单元、移动设备等。无线通信设备的示例包括蜂窝电话、智能电话、个人数字助理(PDA)、膝上型电脑、上网本、电子阅读器、无线调制解调器等。在3GPP规范中,无线通信设备通常被称为UE。然而,由于本公开的范围不应限于3GPP标准,因此术语“UE”和“无线通信设备”在本文中可互换使用,以表示更通用的术语“无线通信设备”。UE还可更一般地称为终端设备。

  在3GPP规范中,基站通常称为节点B、演进节点B(eNB)、家庭增强或演进的节点B(HeNB)或者一些其他类似术语。由于本公开的范围不应限于3GPP标准,因此术语“基站”、“节点B”、“eNB”、“gNB”和/或“HeNB”在本文中可互换使用,以表示更一般的术语“基站”。此外,术语“基站”可用来表示接入点。接入点可以是为无线通信设备提供对网络(例如,局域网(LAN)、互联网等)的接入的电子设备。术语“通信设备”可用来表示无线通信设备和/或基站。eNB还可更一般地称为基站设备。

  应当注意,如本文所用,“小区”可以是由标准化或监管机构指定用于高级国际移动通信(IMT-Advanced)的任何通信信道,并且该“小区”的全部或其子集可被3GPP采用作为用于eNB与UE之间的通信的授权频带(例如,频带)。还应该注意,在E-UTRA和E-UTRAN总体描述中,如本文所用,“小区”可以被定义为“下行链路资源和可选的上行链路资源的组合”。下行链路资源的载波频率与上行链路资源的载波频率之间的链接可以在下行链路资源上传输的系统信息中得到指示。

  “配置的小区”是UE知晓并得到eNB准许以传输或接收信息的那些小区。“配置的小区”可以是服务小区。UE可接收系统信息并对所有配置的小区执行所需的测量。用于无线电连接的“配置的小区”可包括主小区和/或零个、一个或多个辅小区。“激活的小区”是UE正在其上进行发送和接收的那些配置的小区。也就是说,已激活的小区是UE监视其物理下行链路控制信道(PDCCH)的那些小区,并且是在下行链路传输的情况下,UE对其物理下行链路共享信道(PDSCH)进行解码的那些小区。“已去激活的小区”是UE不监视传输PDCCH的那些已配置的小区。应当注意,可以按不同的维度来描述“小区”。例如,“小区”可具有时间、空间(例如,地理)和频率特性。

  第五代(5G)蜂窝通信(也由3GPP称为“新无线电”、“新无线电接入技术”或“NR”)设想了使用时间/频率/空间资源以允许增强型移动宽带(eMBB)通信和超高可靠低延迟通信(URLLC)服务以及大规模机器类型通信(mMTC)等服务。新无线电(NR)基站可称为gNB。gNB还可更一般地称为基站设备。

  本文所述的系统和方法的一些配置教导了用于URLLC传输/重传管理以满足延迟/可靠性要求的方法。URLLC的一些要求涉及用户(U)平面延迟和可靠性。针对URLLC,对于UL和DL两者,目标用户平面延迟为0.5毫秒(ms)。对于1毫秒(ms)内的X字节,目标可靠性为1-10-5。

  这些URLLC特定的约束使得混合自动重复请求(HARQ)和重传机制设计变得困难。例如,接收器必须以快速确认(ACK)或否定确认(NACK)或上行链路授权来应答以满足延迟需求,或者发射器可立即重传而无需等待ACK/NACK来提高可靠性。另一方面,支持基于授权或免授权的重复,以进一步提高可靠性。如何终止重复也是一个重要的问题。所述系统和方法在不同情况下教导URLLC HARQ/重传设计。

  现在将参考附图来描述本文所公开的系统和方法的各种示例,其中相同的参考标号可指示功能相似的元件。如在本文附图中一般性描述和说明的系统和方法能够以各种不同的具体实施来布置和设计。因此,下文对附图呈现的几种具体实施进行更详细的描述并非意图限制要求保护的范围,而是仅仅代表所述系统和方法。

  图1是示出可在其中实施用于不具有授权的上行链路传输的系统和方法的一个或多个gNB 160以及一个或多个UE 102的一个具体实施的框图。一个或多个UE 102使用一个或多个天线122a-n来与一个或多个gNB160进行通信。例如,UE 102使用一个或多个天线122a-n将电磁信号发射到gNB 160并且从gNB 160接收电磁信号。gNB 160使用一个或多个天线180a-n来与UE 102进行通信。

  UE 102和gNB 160可使用一个或多个信道119、121来彼此通信。例如,UE 102可使用一个或多个上行链路信道121将信息或数据传输到gNB 160。上行链路信道121的示例包括PUCCH(物理上行链路控制信道)和PUSCH(物理上行链路共享信道)、PRACH(物理随机接入信道)等。例如,上行链路信道121(例如,PUSCH)可用于传输UL数据(即,传输块)、MAC PDU和/或UL SCH(上行链路共享信道))。

  此处,UL数据可包括URLLC数据。URLLC数据可以是UL SCH数据。此处,可限定URLLC-PUSCH(即,来自PUSCH的不同物理上行链路共享信道)以传输URLLC数据。为了简单描述,术语“PUSCH”可表示以下中的任何一者:(1)仅PUSCH(例如,常规PUSCH、非URLLC-PUSCH等),(2)PUSCH或URLLC-PUSCH,(3)PUSCH和URLLC-PUSCH,或(4)仅URLLC-PUSCH(例如,不是常规PUSCH)。

  另外,例如,上行链路信道121可用于传输混合自动重复请求-ACK(HARQ-ACK)、信道状态信息(CSI)和/或调度请求(SR)。HARQ ACK可包括指示DL数据(即,传输块)、介质访问控制协议数据单元(MAC PDU)和/或DL SCH(下行链路共享信道)的肯定确认(ACK)或否定确认(NACK)的信息。另外,HARQ-ACK、CSI和/或SR可包括在UCI(例如,上行链路控制信息)中。

  CSI可包括指示下行链路的信道质量的信息。SR可用于请求用于新传输和/或重传的UL SCH(上行链路共享信道)资源。即,SR可用于请求用于传输UL数据的UL资源。

  另外,PRACH可用于随机接入过程中的随机接入前导码(例如,消息1(Msg.1))传输。此处,随机接入过程可包括基于争用的随机接入过程(例如,CBRA过程)和/或基于非争用的随机接入过程(例如,无争用的随机接入过程(例如,CFRA过程))。在一些方法中,PRACH(例如,随机接入过程)可用于初始接入连接建立过程、切换过程、连接重新建立、定时调节(例如,上行链路传输的同步,用于UL同步)和/或用于请求上行链路共享信道(UL-SCH)资源(例如,上行链路PSCH(例如,PUSCH)资源)。

  另外,在随机接入过程中,可在PDSCH上传输随机接入响应(例如,消息2(Msg.2))。例如,可通过使用具有RA-RNTI(随机接入RNTI(无线电网络临时标识符))的PDCCH来调度用于随机接入响应的PDSCH。例如,包括在随机接入响应中的随机接入响应授权可用于调度上行链路PSCH(例如,PUSCH、随机接入过程(例如,基于争用的随机接入过程)中的消息3(Msg.3))。即,通过使用随机接入响应授权作为基于争用的随机接入过程的一部分来调度PUSCH传输(例如,消息3(Msg.3)传输)。

  此处,如上所述,随机接入过程可包括基于争用的随机接入过程和/或基于非争用的随机接入过程。例如,基于争用的随机接入过程可包括4步过程。另外,基于非争用的随机接入过程可包括2步(例如,和/或3步)过程。

  例如,在基于争用的随机接入过程中,UE 102可使用一个或多个PRACH时机传输随机接入前导码(例如,Msg.1)。另外,在随机接入响应接收中(例如,在基于争用的随机接入过程中),UE 102可接收随机接入响应(例如,Msg.2)。例如,一旦传输随机接入前导码,UE102就可以在RA响应窗口中监视PDCCH以获得由RA-RNTI标识的一个或多个随机接入响应。即,UE 102可在DL-SCH(例如,PDSCH)上接收随机接入响应,该随机接入响应通过使用具有由RA-RNTI加扰的CRC的PDCCH来调度。并且,在成功接收包含与所传输的随机接入前导码相匹配的随机接入前导标识符的一个或多个随机接入响应之后,UE 102可停止对随机接入响应的监视。

  即,随机接入响应可包含一个或多个随机接入前导标识符。另外,随机接入响应可包括定时超前命令。另外,随机接入响应可包括随机接入响应授权。如上所述,PUSCH传输(例如,UL-SCH传输、Msg.3传输)可通过使用随机接入响应授权来调度。例如,PUSCH(例如,UL-SCH、Msg.3)的初始传输(例如,新传输)可通过使用随机接入响应授权来调度。另外,随机接入响应可包含临时C-RNTI。例如,PUSCH传输(例如,UL SCH传输、Msg.3传输)可通过使用具有由临时C-RNTI加扰的CRC的PDCCH(例如,用于上行链路的一个或多个DCI格式)来调度。例如,PUSCH的重传(例如,相同传输块、UL-SCH、Msg.3的重传)可通过使用具有由临时C-RNTI加扰的CRC的PDCCH来调度。

  另外,在调度的传输中(例如,在基于争用的随机接入过程中),UE 102可基于定时超前命令来执行用于上行链路传输的定时调节。另外,UE 102可基于随机接入响应授权来执行PUSCH传输(例如,UL-SCH传输,Msg.3传输)。此处,Msg.3传输可包括用于标识UE 102的标识(初始UE标识或C-RNTI)。如上所述,UE 102可执行PUSCH(例如,UL-SCH、Msg.3)的初始传输(例如,新传输),该初始传输可通过使用随机接入响应授权来调度。另外,UE 102可执行PUSCH的重传(例如,相同传输块、UL-SCH、Msg.3的重传),该重传可通过使用具有由临时C-RNTI加扰的CRC的PDCCH来调度。

  另外,在争用解决方案中(例如,在基于争用的随机接入过程中),在从gNB 160接收的争用解决标识与初始UE标识匹配的情况下,UE 102可认为该争用解决方案成功。另外,在接收到具有由C-RNTI加扰的CRC的PDCCH的情况下,UE 102可认为该争用解决方案成功。然后,UE 102可认为随机接入过程已成功地完成。

  例如,所述一个或多个gNB 160还可以使用一个或多个下行链路信道119将信息或数据传输至一个或多个UE 102。下行链路信道119的示例包括PDCCH、PDSCH等。可使用其他种类的信道。PDCCH可用于传输下行链路控制信息(DCI)。

  一个或多个UE 102中的每一者可包括一个或多个收发器118、一个或多个解调器114、一个或多个解码器108、一个或多个编码器150、一个或多个调制器154、数据缓冲器104和UE操作模块124。例如,可在UE 102中实现一个或多个接收路径和/或发射路径。为方便起见,UE 102中仅示出了单个收发器118、解码器108、解调器114、编码器150和调制器154,但可实现多个并行元件(例如,多个收发器118、解码器108、解调器114、编码器150和调制器154)。

  收发器118可包括一个或多个接收器120以及一个或多个发射器158。一个或多个接收器120可使用一个或多个天线122a-n从gNB 160接收信号。例如,接收器120可接收并降频转换信号,以产生一个或多个接收的信号116。可将一个或多个接收的信号116提供给解调器114。一个或多个发射器158可使用一个或多个天线122a-n将信号发射到gNB 160。例如,一个或多个发射器158可将一个或多个调制信号156升频转换并发射。

  解调器114可解调一个或多个接收的信号116,以产生一个或多个解调的信号112。可将一个或多个解调的信号112提供给解码器108。UE 102可使用解码器108来解码信号。解码器108可产生解码信号110,该解码信号可包括UE解码信号106(也被称为第一UE解码信号106)。例如,该第一UE解码的信号106可包括接收的有效载荷数据,该有效载荷数据可存储在数据缓冲器104中。解码的信号110(也被称为第二UE解码的信号110)中的另一个信号可以包括开销数据和/或控制数据。例如,第二UE解码的信号110可提供UE操作模块124可用来执行一个或多个操作的数据。

  一般来讲,UE操作模块124可使UE 102能够与一个或多个gNB 160进行通信。UE操作模块124可包括UE信令模块126。

  UE 102(例如,UE信令模块126)和/或gNB 160(例如,gNB信令模块194)可执行与不具有授权的上行链路(UL)传输相关的一个或多个操作。例如,UE 102和/或gNB 160可执行用于不具有授权的UL传输的资源确定和/或冲突处理。UE 102(例如,NR UE或NR中的UE102)可支持多种类型的不具有授权的上行链路传输(其可以被称为免授权(GF)上行链路传输、GF传输和/或利用配置的授权的传输)。第一类型(1类)的GF传输可以是不具有授权的UL数据传输,其可以仅基于不具有任何L1信令的无线电资源控制(RRC)(重新)配置。在第二类型(2类)的GF传输中,不具有授权的UL数据传输可基于RRC配置和第1层(Ll)信令来用于不具有授权的UL数据传输的激活/去激活。

  一个或多个参数可用于时域资源确定。参数的示例可包括周期性、时域偏移、时域分配、重复数量和/或聚合因子。关于参数的更多细节如下给出。

  周期性(P)是通过配置的授权进行的两个连续初始传输(不是两个连续重复)之间的时间间隔。在一些方法中,周期性是在用于1类和2类两者的SPS-Config信息元素中配置的RRC。该值可以符号或毫秒(ms)为单位。在本公开中,作为示例,时隙被用作周期性单位,但也可使用其他周期性单位。可通过考虑参数和时隙内的符号数量将ms单位转换成时隙。

  一个问题是如何确定周期的窗口、周期的起始位置和/或周期边界。在一些方法中,周期边界可以是固定的。例如,周期可从固定位置开始。例如,周期的起始时隙索引可以是周期性P的倍数。在一些方法中,周期边界可以是灵活的。例如,周期边界可能并不总是固定的。例如,周期的起始时隙索引可以与由配置的授权给出的资源相同。图2中示出了固定周期边界和灵活周期边界的示例。在一些方法中,周期边界是固定的还是灵活的可以是可配置的。

  时域偏移可以确定不具有授权的UL传输的起始位置。对于1类,时域偏移可以是RRC配置的,并且时域偏移单位可以是时隙(附加地或另选地,时域偏移单位可以是子帧或符号等)。一个问题可能是如何确定时域偏移的参考点。在一些方法中,参考点可以与周期边界相同(如果周期边界是固定的)。在一些方法中,参考点可以处于固定位置(例如,时隙索引0或任何位置)。

  对于2类,时域偏移可以是PDCCH激活到第一UL传输时机的定时,其可以由K2表示。K2可以由RRC配置。K2可以由用于2类的激活的PDCCH(DCI)指示。K2可以由用于2类的激活的DCI格式0_0(即,回退DCI)指示。K2可以由用于2类的激活的DCI格式0_1(即,非回退DCI)指示。如果接收到DCI格式0_0和DCI格式0_1用于UL 2类GF传输,则可以应用包括在DCI格式0_0中的K2。如果接收到DCI格式0_0和DCI格式0_1用于UL 2类GF传输,则可以应用包括在DCI格式0_1中的K2。可能不期望UE 102接收到DCI格式0_0和DCI格式0_1用于UL 2类GF传输。

  剩余最少系统信息(RMSI)用于携带K2定时信息。RMSI携带的K2可用于通过使用DCI格式0_0(即,回退DCI)激活的UL 2类。

  K2的值的集合可以由RRC配置,并且可以由用于UL 2类GF的激活的PDCCH(DCI)指示对K2的该值集合中K2的选择(例如,选定值)。K2可以是固定的,或者默认值可以是预定义的(即,预先确定的值)。例如,如果K2未被明确指示(例如,由RRC和/或由用于UL 2类的激活的PDCCH),则可应用默认值(例如,4)。默认值可以用于通过使用DCI格式0_0(即,回退DCI)激活的UL 2类GF。

  如果不存在K2定时字段或者定时字段在用于UL 2类GF的激活的DCI中为0位(例如,定时字段K2的存在可以由RRC配置,定时字段K2可以仅存在于用于UL 2类GF的激活的DCI格式0_1(即,非回退DCI)中,并且/或者定时字段K2可以不存在于用于UL 2类GF的激活的DCI格式0_0(即,回退DCI)中),则可以根据以下方法中的一种或多种来指示K2。DCI字段的重新解释:可以使用不同的DCI字段来指示K2。RMSI可用于携带K2定时信息。可以使用所配置的集合中的第一个值,或者可使用任何预定义的值。

  时域分配可以确定为上行链路传输指定的起始符号和长度以及PUSCH映射类型的有效组合中的任一个。时域分配可由RRC配置表[pusch-symbolAllocation]的行索引来呈现,其中索引行可定义时隙偏移K2、起始和长度指示符SLIV和/或要在PUSCH接收中应用的PUSCH映射类型。对于1类,时域分配可以是RRC配置的。

  对于2类,可以根据以下方法中的一种或多种来确定时域分配。时域分配可以由RRC配置。时域分配可以由用于2类的激活的PDCCH(DCI)指示。时域分配可以由用于2类的激活的DCI格式0_0(即,回退DCI)指示。时域分配可以由用于2类的激活的DCI格式0_1(即,非回退DCI)指示。例如,如果接收到DCI格式0_0和DCI格式0_1用于UL 2类GF传输,则可以应用包括在DCI格式0_0中的时域分配。又如,如果接收到DCI格式0_0和DCI格式0_1用于UL 2类GF传输,则可以应用包括在DCI格式0_1中的时域分配。可能不期望UE 102接收到DCI格式0_0和DCI格式0_1用于UL 2类GF传输。

  RMSI可用于携带时域分配信息。例如,RMSI携带的时域分配可用于通过使用DCI格式0_0(即,回退DCI)激活的UL 2类。

  时域分配的值的集合(例如,表)可以由RRC配置。另外,可以由用于UL 2类GF的激活的PDCCH(DCI)指示对时域分配的该值集合中时域分配的选择(例如,选定值)。

  时域分配可以是固定的,或者默认值可以是预定义的(即,预先确定的值)。例如,如果时域分配未被明确指示(例如,由RRC和/或由用于UL 2类的激活的PDCCH),则可应用默认值(例如,起始符号可以在时隙中处于符号索引#0,并且PUSCH的长度是14个符号)。默认值可以用于通过使用DCI格式0_0(即,回退DCI)激活的UL 2类GF。

  如果不存在时域分配字段或者时域分配字段在用于UL 2类GF的激活的DCI中为0位(例如,时域分配的存在可以由RRC配置,时域分配可以仅存在于用于UL 2类GF的激活的DCI格式0_1(即,非回退DCI)中,并且/或者时域分配可以不存在于用于UL 2类GF的激活的DCI格式0_0(即,回退DCI)中),则可以根据以下方法中的一种或多种来指示时域分配。DCI字段的重新解释:可以使用不同的DCI字段来指示时域分配。RMSI可用于携带时域分配信息。可以使用所配置的集合中的第一个值,或者可使用任何预定义的值。在一些方法中,在配置重复和/或时隙聚合的情况下,可以跨UL中的时隙使用相同的符号分配。

  重复数量参数可以表示为K。传输块(TB)可以跨时隙重复并且重复数量可以是K。K可以是RRC配置的。例如,K可以通过使用RRC消息针对1类和/或2类两者进行配置(例如,基于1类配置的授权的PUSCH传输(例如,由RRC消息),和/或基于2类配置的授权的PUSCH传输(例如,由RRC消息和/或用于指示配置的授权2类激活的一个或多个DCI格式))。此处,用于指示2类配置的授权激活的一个或多个DCI格式可以是具有由CS-RNTI加扰的CRC(例如,配置调度RNTI)的一个或多个DCI格式。可存在对K的若干解释。在一些方法中,K可以是用于重复的实际传输的数量。在一些方法中,K可以是用于重复的传输时机的数量。可以为重复跨时隙应用或不应用相同的符号分配。

  聚合因子参数可以表示为aggregationFactorUL。TB可跨时隙重复,并且时隙的数量可为aggregationFactorUL。aggregationFactorUL可以是RRC配置的。例如,aggregationFactorUL可被配置用于PDCCH。另外,aggregationFactorUL可被配置用于PUSCH传输(例如,通过使用具有由C-RNTI加扰的CRC的一个或多个DCI格式调度的PUSCH传输)。

  另外,aggregationFactorUL可被配置用于1类和2类两者。此处,可针对每个服务小区配置aggregationFactorUL。可以为主小区和/或一个或多个辅小区中的每一者配置aggregationFactorUL。另外,可针对带宽部分(例如,针对上行链路带宽部分(UL BWP))来配置aggregationFactorUL。例如,aggregationFactorUL可被配置用于服务小区中的ULBWP中的每一个。并且,当UE被配置为aggregationFactorUL>1时,可以在未由时隙格式指示定义为DL的aggregationFactorUL连续时隙上应用相同的符号分配。可存在对aggregationFactorUL的若干解释。在一些方法中,aggregationFactorUL可以是用于重复的实际传输的已使用时隙的数量。在一些方法中,aggregationFactorUL可以是用于重复的传输时机的数量或可用于重复的时隙的数量。

  如上所述,gNB 160可以通过使用RRC消息来配置aggregationFactorUL。例如,gNB160可以通过使用RMSI来配置aggregationFactorUL。另外,gNB 160可以通过使用专用RRC消息来配置aggregationFactorUL。例如,在未配置包括在专用RRC消息中的aggregationFactorUL的情况下(例如,没有通过使用专用RRC消息来配置aggregationFactorUL的值),可以使用通过使用RMSI配置的aggregationFactorUL。另外,如果配置了包括在专用RRC消息中的aggregationFactorUL,则可以使用包括在专用RRC消息中的aggregationFactorUL。即,包括在专用RRC消息中的aggregationFactorUL可以覆盖包括在RMSI中的aggregationFactorUL。另外,可以(例如,由规范)定义aggregationFactorUL的默认值(例如,预先确定的值)。例如,值“1”可以被定义为aggregationFactorUL的默认值。并且,在未配置包括在专用RRC消息中的aggregationFactorUL的情况下(例如,没有通过使用专用RRC消息配置来aggregationFactorUL的值),可以使用aggregationFactorUL的默认值。

  此处,为了简化描述,在一些具体实施中,可以假设通过使用本文描述的RMSI配置的aggregationFactorUL(例如,aggregationFactorUL的值)被包括在第一值中。另外,为了简化描述,在一些具体实施中,可以假设本文所述的aggregationFactorUL的默认值(例如,固定值(例如,预先确定的值),例如“1”)被包括在第二值中。另外,为了简化描述,在一些具体实施中,可以假设通过使用本文描述的专用RRC消息配置的aggregationFactorUL(例如,aggregationFactorUL的值)被包括在第三值中。此处,第一值和/或第三值可包括在PDCCH的配置中(例如,包括在RMSI和/或专用RRC消息中的PDCCH配置)。

  如上所述,第三值可以被配置用于通过使用具有由C-RNTI加扰的CRC的一个或多个DCI格式调度的PUSCH传输。例如,第三值可以仅用于通过使用具有由C-RNTI加扰的CRC的一个或多个DCI格式调度的PUSCH传输。即,在接收到具有由C-RNTI加扰的CRC的一个或多个DCI格式(例如,用于调度PUSCH的一个或多个DCI格式)的情况下,UE 102可以使用第三值来执行PUSCH传输。另外,第三值可以被配置用于1类和/或2类。例如,第三值可以用于通过使用具有由C-RNTI和/或CS-RNTI加扰的CRC的DCI格式调度的PUSCH传输。即,在接收到具有由C-RNTI和/或CS-RNTI加扰的CRC的一个或多个DCI格式(例如,用于调度PUSCH的一个或多个DCI格式)的情况下,UE 102可以使用第三值来执行PUSCH传输。

  另外,第三值可以用于通过使用DCI格式0_1(例如,非回退DCI)调度的PUSCH传输。例如,第三值可以仅用于通过使用具有由C-RNTI加扰的CRC的DCI格式0_1调度的PUSCH传输。即,在接收到具有由C-RNTI加扰的CRC的DCI格式0_1(例如,用于调度PUSCH的一个或多个DCI格式)的情况下,UE 102可以使用第三值来执行PUSCH传输。此处,可以仅在UE特定的搜索空间(例如,USS)中接收(例如,检测、监视)DCI格式0_1(例如,具有由C-RNTI加扰的CRC的DCI格式0_1)。即,UE 102可以仅在USS中接收DCI格式0_1(例如,具有由C-RNTI加扰的CRC的DCI格式0_1)。

  此处,第一值和/或第二值可以用于通过使用随机接入响应授权调度的PUSCH传输。例如,第一值和/或第二值可以用于与随机接入响应授权对应的PUSCH传输(例如,消息3传输)。即,在随机接入过程(例如,基于争用的随机接入过程)中,在接收到随机接入响应授权的情况下(例如,基于对随机接入响应授权的检测),UE 102可以使用第一值和/或第二值来执行PUSCH传输(例如,消息3传输)。另外,第一值和/或第二值可以用于通过使用具有由临时C-RNTI加扰的CRC的DCI格式(例如,具有由临时C-RNTI加扰的CRC的DCI格式0_0、具有由临时C-RNTI加扰的CRC的PDCCH)调度的PUSCH传输。例如,第一值和/或第二值可以用于与具有由临时C-RNTI加扰的CRC的DCI格式对应的PUSCH传输(例如,消息3传输)。即,第一值和/或第二值可以用于与相同传输块(例如,UL-SCH,消息3)的重传对应的PUSCH传输。即,在接收到具有由临时C-RNTI加扰的CRC的DCI格式的情况下,UE 102可以使用第一值和/或第二值来执行PUSCH传输。

  即,第三值可以用于PUSCH传输,除非该PUSCH传输对应于随机接入响应授权,或者该PUSCH传输对应于相同传输块的重传(即,具有由临时C-RNTI加扰的CRC的DCI格式)。此处,如上所述,对应于随机接入响应授权的PUSCH传输可作为随机接入过程(例如,基于争用的随机接入过程)的一部分来执行。另外,对应于相同传输块(即,具有由临时C-RNTI加扰的CRC的DCI格式)的重传的PUSCH传输可作为随机接入过程(例如,基于争用的随机接入过程)的一部分来执行。此处,如上所述,随机接入响应授权可以包括在通过使用具有由RA-RNTI加扰的CRC的DCI格式(例如,具有由RA-RNTI加扰的CRC的PDCCH)调度的随机接入响应中(例如,在PDSCH上传输)。此处,可以仅在公共搜索空间(例如,CSS)中接收(例如,检测、监视)具有由RA-RNTI加扰的CRC的DCI格式。另外,可以仅在CSS中接收(例如,检测、监视)具有由临时C-RNTI加扰的CRC的DCI格式。即,UE 102可以仅在CSS中接收具有由RA-RNTI加扰的CRC的DCI格式和/或具有由临时C-RNTI加扰的CRC的DCI格式。

  另外,第一值和/或第二值可以用于通过使用DCI格式0_0(例如,回退DCI)调度的PUSCH传输。例如,第一值和/或第二值可以用于通过使用具有由C-RNTI加扰的CRC的DCI格式0_0调度的PUSCH传输。即,在具有由C-RNTI加扰的CRC的DCI格式0_0的情况下,UE 102可以使用第一值和/或第二值来执行PUSCH传输。例如,第一值和/或第二值可以用于通过使用具有由CS-RNTI加扰的CRC的DCI格式0_0调度的PUSCH传输。即,在具有由C-RNTI和/或CS-RNTI加扰的CRC的DCI格式0_0的情况下,UE 102可以使用第一值和/或第二值来执行PUSCH传输。此处,DCI格式0_0可以在USS和/或CSS中接收(例如,检测、监视)。

  另外,第一值和/或第二值可以用于通过使用在CSS中接收的DCI格式0_0调度的PUSCH传输。即,第一值和/或第二值可以仅用于通过使用具有由C-RNTI加扰的CRC的DCI格式0_0调度的PUSCH传输,该DCI格式在CSS中接收。例如,在具有由C-RNTI加扰的CRC的DCI格式0_0在CSS中接收的情况下,UE 102可以使用第一值和/或第二值来执行PUSCH传输。例如,第一值和/或第二值可以用于通过使用在CSS中接收的具有由CS-RNTI加扰的CRC的DCI格式0_0调度的PUSCH传输。即,在具有由C-RNTI和/或CS-RNTI加扰的CRC的DCI格式0_0在CSS中接收的情况下,UE 102可以使用第一值和/或第二值来执行PUSCH传输。

  即,第三值可以用于通过使用在USS中接收的DCI格式0_0调度的PUSCH传输。即,第三值可以用于通过使用具有由C-RNTI加扰的CRC的DCI格式0_0调度的PUSCH传输,该DCI格式在USS中接收。例如,在具有由C-RNTI加扰的CRC的DCI格式0_0在USS中接收的情况下,UE102可以使用第三值来执行PUSCH传输。另外,第三值可以用于通过使用在USS中接收的具有由CS-RNTI加扰的CRC的DCI格式0_0调度的PUSCH传输。即,在具有由C-RNTI和/或CS-RNTI加扰的CRC的DCI格式0_0在USS中接收的情况下,UE 102可以使用第一值来执行PUSCH传输。

  K与aggregationFactorUL之间的关系可以在以下方法中的一种或多种中实现。在一些方法中,K和aggregationFactorUL两者可具有相同的含义。这两者均可被配置。例如,UE 102可以采用K,或者可以忽略aggregationFactorUL。在另一个示例中,UE 102可以采用aggregationFactorUL,或者可以忽略K。另选地,可以仅配置K或aggregationFactorUL中的一者(例如,不可以为给定带宽部分同时配置K和aggregationFactorUL)。例如,如果配置了K,则不可以配置aggregationFactorUL。又如,如果配置了aggregationFactorUL,则不可以配置K。

  如上所述,可在PDCCH配置中配置aggregationFactorUL。因此,可在用于PUSCH的配置(例如,包括在RMSI和/或专用RRC消息中的PUSCH配置)中配置重复数量参数(即,K的值)。并且,在配置了aggregationFactorUL和重复数量参数(例如,对于相同时间,和/或对于相同PUSCH传输)的情况下,UE 102可使用aggregationFactorUL(例如,aggregationFactorUL的值)来执行PUSCH传输。另外,在配置了aggregationFactorUL和重复数量参数(例如,在相同的定时处,和/或对于相同PUSCH传输)的情况下,UE 102可以使用重复数量参数(例如,K的值)来执行PUSCH传输。另外,不要求UE配置有aggregationFactorUL和重复数量参数(例如,对于相同时间,对于相同PUSCH传输)。即,gNB160可不配置aggregationFactorUL和重复数量参数(例如,对于相同时间,对于相同PUSCH传输)。即,gNB 160可以配置aggregationFactorUL和重复数量参数中的任一者(例如,对于特定时间,对于特定PUSCH传输)。

  在一些方法中,K和aggregationFactorUL可以具有不同的用途。在一个示例中,K可以用于不具有授权的UL传输(例如,基于配置的授权(例如,1类和/或2类)的PUSCH传输),而aggregationFactorUL可以用于基于授权的传输(例如,通过使用具有由C-RNTI加扰的CRC的DCI格式调度的PUSCH传输)。在另一个示例中,K可以是用于重复的实际传输的数量,而aggregationFactorUL可以是用于重复的传输时机的数量。在又一个示例中,aggregationFactorUL可以是用于重复的实际传输的数量,而K可以是用于重复的传输时机的数量。

  给定上面列出的时域参数,可以确定用于重复的传输时机。可以根据以下方法中的一种或多种来确定传输时机。在一些方法中,周期内可能的传输时机的数量可以是固定的,无论是否为真实(例如,实际)传输使用任何传输时机。结合图3示出了固定数量的可能传输时机的示例。

  在一些方法中,周期内可能的传输时机的数量可以是灵活的。传输时机可以位于周期内的任何时隙中,并且在任何时机错过、丢弃或冲突的情况下,传输时机的数量可以大于重复数量(例如,K=4)。结合图4示出了灵活数量的可能传输时机的示例。

  在一些情况下,参数之间可能存在不匹配。参数不匹配的一些示例如下给出。在一些示例中,周期性可由符号(例如,2个符号或7个符号)给出,而时域分配字段可用于指示时隙内的起始符号和长度(最多14个符号)。在这种情况下,可存在若干方法来处理时域分配字段。在一些方法中,时域分配字段可被忽略。可使用其他技术(例如,默认时域分配)来确定基于符号的周期内的时域分配。在一些方法中,不同的解释可用于时域分配字段。在一些方法中,可使用时域分配表中的部分值。例如,长度短于或等于7的SFIV可用于周期性为7个符号的情况。在一些方法中,可使用不同的时域分配表。该表可在规范中定义。

  在参数不匹配的一些示例中,周期内的时隙数量可以小于配置的重复数量或聚合因子。例如,15千赫(kHz)的参数的周期性可以为1ms,使得在一个周期中仅存在1个时隙,但是K可以为2、4或8。可存在若干方法来处理不匹配。在一些方法中,忽略K或聚合因子字段。可使用其他技术(例如,默认时域分配)来确定较短周期内的时域分配。在一些方法中,不期望UE 102被配置有比周期内的时隙数量大的K值或聚合因子。可将可小于或等于周期内的时隙数量的K或聚合因子分配给UE 102。在一些方法中,可以在周期结束时终止(例如,始终终止)重复。在一些方法中,UE 102可在下一个周期中使用传输时机。在一些方法中,基于授权的传输/重传可以使用配置的重复数量或聚合因子。

  重复数量可以根据以下方法中的一种或多种来计数。一个方面可以是何时开始计数。在一些方法中,计数可以从第一个真实(例如,实际)传输开始。在一些方法中,计数可以从周期内的第一个传输时机开始。另一方面可以是当发生冲突(例如,时隙格式指示符(SFI)指示的下行链路(DL)符号、仅上行链路控制信息(UCI)、探测参考信号(SRS)等)时如何计数。在一些方法中,可能不会对丢弃、失败或错过的重复进行计数。在一些方法中,对丢弃的、失败或错过的重复进行计数。

  配置的授权上的UCI捎带的一个或多个条件的示例如下给出。周期性:是否允许由配置的授权给出的PUSCH上的UCI捎带可取决于周期性。在一些方法中,仅当周期性大于(或小于)阈值(例如,其中阈值可以是固定的、由高层配置和/或由L1信令指示)时,UCI才可以在PUSCH上捎带。时域分配:是否允许由配置的授权给出的PUSCH上的UCI捎带可取决于时域分配。在一些方法中,仅当微时隙(或SLIV)的长度大于(或小于)阈值(例如,其中阈值可以是固定的、由高层配置和/或由L1信令指示)时,UCI才可以在PUSCH上捎带。用于配置的授权的调制和编码方案(MCS):是否允许由配置的授权给出的PUSCH上的UCI捎带可取决于MCS。在一些方法中,仅当MCS索引大于(或小于)阈值(其中阈值可以是固定的、由高层配置和/或由L1信令指示)时,UCI才可以在PUSCH上捎带。

  此处,由配置的授权给出的PUSCH上的UCI捎带可包括基于配置的授权调度的PUSCH上的UCI传输。例如,在UCI传输(例如,在PUSCH和/或PUCCH上)与基于配置的授权的PUSCH传输冲突的情况下,可以在由配置的授权给出的PUSCH上传输UCI。例如,在UCI传输和PUSCH传输重叠的情况下,至少在一个符号(例如,一个OFDM符号)中,UE102可基于配置的授权使用PUSCH(例如,PUSCH资源)来传输UCI(例如,尝试在PUCCH和/或PUSCH上传输的UCI)。

  用于配置的授权的任何其他参数:是否允许由配置的授权给出的PUSCH上的UCI捎带可取决于用于配置的授权的任何其他参数。UCI内容/类型:是否允许由配置的授权给出的PUSCH上的UCI捎带可取决于UCI内容/类型。在一些方法中,HARQ-ACK信息位可以在PUSCH上捎带,但信道状态信息(CSI)不可以。或者,1类CSI可以在PUSCH上捎带,但是2类CSI不可以。

  带宽部分(BWP)或载波:是否允许由配置的授权给出的PUSCH上的UCI捎带可取决于带宽部分或载波。在一些方法中,UCI可以(或不可以)在与初始BWP或默认BWP相关联的PUSCH上捎带。是否允许由配置的授权给出的PUSCH上的UCI捎带可取决于带宽部分或载波的配置。在一些方法中,可以利用前述条件的任何组合。

  使用回退DCI或非回退DCI进行2类激活的条件的示例如下给出。周期性:是使用回退DCI还是非回退DCI进行2类激活可取决于周期性。在一些方法中,仅当周期性大于(或小于)阈值(例如,其中阈值可以是固定的、由高层配置和/或由L1信令指示)时,回退DCI才可以用于2类激活。时域分配:是使用回退DCI还是非回退DCI进行2类激活可取决于时域分配。在一些方法中,仅当某些起始符号和长度(例如,时隙中的所有14个符号)用于时域分配时,回退DCI才可以用于2类激活。用于配置的授权的任何其他参数:是使用回退DCI还是非回退DCI进行2类激活可取决于用于配置的授权的任何其他参数。带宽部分(BWP)或载波:是使用回退DCI还是非回退DCI进行2类激活可取决于带宽部分或载波。在一些方法中,回退DCI可用于仅在初始BWP或默认BWP上进行2类激活。是使用回退DCI还是非回退DCI进行2类激活可取决于带宽部分或载波的配置。在一些方法中,可以利用前述条件的任何组合。

  如上所述,在新无线电(NR)中,UE 102可支持多种类型的不具有授权的上行链路传输(例如,GF上行链路传输、GF传输和/或利用配置的授权的传输)。第一类型(1类)的GF传输可以是不具有授权的UL数据传输,其可以仅基于不具有任何L1信令的RRC(重新)配置。在第二类型(2类)的GF传输中,不具有授权的UL数据传输可基于RRC配置和Ll信令来用于不具有授权的UL数据传输的激活/去激活。列表1中示出了RRC配置的一个示例。

  

  

  

  

  

  

  

  

  

  

  

  

  列表1

  对于2类,可利用PDCCH激活。列表2和列表3示出了可用于激活的DCI格式0_0(例如,回退DCI)和格式0_1的示例。

  

  列表2

  

  

  

  列表3

  对于1类和2类配置的授权UL传输,UE 102可以配置有一个或多个参数。在一些方法中,UE 102可配置有UE特定RRC信令,该信令独立于用于基于授权的传输的相关联RRC参数。一个或多个参数的示例如下给出:dmrs-Type:ENUMERATED{type1,type2},FrequencyHopping:ENUMERATED{model,mode2},dmrs-AdditionalPosition:ENUMERATED{pos0,pos1,pos2,pos3},DMRSLength:ENUMERATED{len1,len2}和/或phaseTracking-RS。在一些方法中,DMRSLength在PUSCH-Config中可被称为“maxLength”。如果maxLength被配置为len2,则可以由DCI动态地指示单符号或双符号DM-RS。对于1类配置的授权,DMRS长度可以被配置为len1或len2。

  一个或多个参数的另外的示例如下给出:对于dft-S-OFDM:nDMRS-CSH-Identity:INTEGER(0..1007),scramblingID BIT STRING(SIZE(16)),对于cp-OFDM:nPUSCH-Identity:INTEGER(0..1007),disableSequenceGroupHopping:ENUMERATED{disabled},sequenceHoppingEnabled:ENUMERATED{enabled},cyclicShift:INTEGER(0..7),activateDMRS-WithOCC:ENUMERATED{enabled},groupAssignmentPUSCH:INTEGER(0..29),mcs-TableTransformPrecoder:ENUMERATED{64QAM,256QAM},mcs-Table:ENUMERATED{64QAM,256QAM},和/或uci-on-PUSCH:CHOICE{dynamic EQUENCE(SIZE(1..4))OFBetaOffsets,semiStatic BetaOffsets}。对于不具有授权的1类UL数据传输,在一些方法中,“uci-on-PUSCH”可以为“semiStatic BetaOffsets”。在一些方法中,支持用于配置的授权的PUSCH上UCI。

  在一些方法中,参数resourceAllocation可被定义为:CHOICE{resourceAllocationType0,resourceAllocationType1,dynamics witch}。对于不具有授权的1类UL数据传输,“resourceAllocation”可为semiStatic“resourceAllocationType0”或“resourceAllocationType1”。参数rbg-Size可为:ENUMERATED{config1,config2}。参数rbg-size可在transformPrecoder参数被禁用时使用。

  UE操作模块124可将信息148提供给一个或多个接收器120。例如,UE操作模块124可通知接收器120何时接收重传。

  UE操作模块124可将信息138提供给解调器114。例如,UE操作模块124可通知解调器114针对来自gNB 160的传输所预期的调制图案。

  UE操作模块124可将信息136提供给解码器108。例如,UE操作模块124可通知解码器108针对来自gNB 160的传输所预期的编码。

  UE操作模块124可将信息142提供给编码器150。信息142可包括待编码的数据和/或用于编码的指令。例如,UE操作模块124可指示编码器150编码传输数据146和/或其他信息142。其他信息142可包括PDSCH HARQ-ACK信息。

  编码器150可编码由UE操作模块124提供的传输数据146和/或其他信息142。例如,对数据146和/或其他信息142进行编码可涉及错误检测和/或纠正编码,将数据映射到空间、时间和/或频率资源以便传输,多路复用等。编码器150可将编码的数据152提供给调制器154。

  UE操作模块124可将信息144提供给调制器154。例如,UE操作模块124可通知调制器154将用于向gNB 160进行传输的调制类型(例如,星座映射)。调制器154可调制编码的数据152,以将一个或多个调制的信号156提供给一个或多个发射器158。

  UE操作模块124可将信息140提供给一个或多个发射器158。该信息140可包括用于一个或多个发射器158的指令。例如,UE操作模块124可指示一个或多个发射器158何时将信号发射到gNB 160。例如,一个或多个发射器158可在UL子帧期间进行传输。一个或多个发射器158可升频转换调制的信号156并将该信号发射到一个或多个gNB 160。

  一个或多个gNB 160中的每一者可包括一个或多个收发器176、一个或多个解调器172、一个或多个解码器166、一个或多个编码器109、一个或多个调制器113、数据缓冲器162和gNB操作模块182。例如,可在gNB 160中实现一个或多个接收路径和/或发射路径。为方便起见,gNB160中仅示出了单个收发器176、解码器166、解调器172、编码器109和调制器113,但可实现多个并行元件(例如,多个收发器176、解码器166、解调器172、编码器109和调制器113)。

  收发器176可包括一个或多个接收器178和一个或多个发射器117。一个或多个接收器178可使用一个或多个天线180a-n从UE 102接收信号。例如,接收器178可接收并降频转换信号,以产生一个或多个接收的信号174。可将一个或多个接收的信号174提供给解调器172。一个或多个发射器117可使用一个或多个天线180a-n将信号发射到UE 102。例如,一个或多个发射器117可将一个或多个调制信号115升频转换并发射。

  解调器172可解调一个或多个接收的信号174,以产生一个或多个解调的信号170。可将一个或多个解调的信号170提供给解码器166。gNB 160可使用解码器166来解码信号。解码器166可产生一个或多个解码的信号164、168。例如,第一gNB解码的信号164可包括接收的有效载荷数据,该有效载荷数据可存储在数据缓冲器162中。第二gNB解码的信号168可包括开销数据和/或控制数据。例如,第二gNB解码的信号168可提供gNB操作模块182可用来执行一个或多个操作的数据(例如,PDSCH HARQ-ACK信息)。

  一般来讲,gNB操作模块182可使gNB 160能够与一个或多个UE 102进行通信。gNB操作模块182可包括gNB信令模块194。gNB信令模块194可执行如本文所述的不具有授权的上行链路传输处理(例如,接收)。

  gNB操作模块182可将信息188提供给解调器172。例如,gNB操作模块182可通知解调器172针对来自一个或多个UE 102的传输所预期的调制图案。

  gNB操作模块182可将信息186提供给解码器166。例如,gNB操作模块182可通知解码器166针对来自UE 102的传输所预期的编码。

  gNB操作模块182可将信息101提供给编码器109。信息101可包括待编码的数据和/或用于编码的指令。例如,gNB操作模块182可指示编码器109编码信息101,包括传输数据105。

  编码器109可编码由gNB操作模块182提供的传输数据105和/或信息101中包括的其他信息。例如,对数据105和/或信息101中包括的其他信息进行编码可涉及错误检测和/或纠正编码,将数据映射到空间、时间和/或频率资源以便传输,多路复用等。编码器109可将编码数据111提供给调制器113。传输数据105可包括要中继到UE 102的网络数据。

  gNB操作模块182可将信息103提供给调制器113。该信息103可包括用于调制器113的指令。例如,gNB操作模块182可通知调制器113将用于向UE 102进行传输的调制类型(例如,星座映射)。调制器113可调制编码的数据111,以将一个或多个调制的信号115提供给一个或多个发射器117。

  gNB操作模块182可将信息192提供给一个或多个发射器117。该信息192可包括用于一个或多个发射器117的指令。例如,gNB操作模块182可指示一个或多个发射器117何时(何时不)将信号发射到UE 102。一个或多个发射器117可升频转换调制的信号115并将该信号发射到一个或多个UE 102。

  应当注意,DL子帧可从gNB 160传输到一个或多个UE 102,并且UL子帧可从一个或多个UE 102传输到gNB 160。此外,gNB 160以及一个或多个UE 102均可在标准特殊子帧中传输数据。

  还应当注意,包括在eNB 160和UE 102中的元件或其部件中的一者或多者可在硬件中实施。例如,这些元件或其部件中的一者或多者可被实现为芯片、电路或硬件部件等。还应当注意,本文所述功能或方法中的一者或多者可在硬件中实现和/或使用硬件执行。例如,本文所述方法中的一者或多者可在芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等中实现,并且/或者使用芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等实现。

  URLLC可与其他服务(例如,eMBB)共存。由于延迟要求,在一些方法中,URLLC可能具有最高优先级。

  图2示出了固定周期边界和灵活周期边界的示例。具体地,该图上部的示例包括对于不具有授权的上行链路传输的一些方法,具有固定周期边界的帧结构。例如,周期的起始时隙索引是周期P的倍数。

  该图下部的示例包括对于不具有授权的上行链路传输的一些方法,具有灵活周期边界的帧结构。例如,周期的起始时隙索引与由配置的授权给出的资源相同。

  图3示出了用于重复的时域资源的示例。具体地,第一个(顶部)示例包括具有固定数量的传输时机的帧结构。例如,传输时机的数量可以是固定的并且与重复数量(例如,K=4)相同,无论是否有任何时机错过、丢弃或冲突。

  第二个示例包括具有多个传输时机的帧结构。例如,如果TB在第一个传输时机之后到达,则可能仅剩下3个传输时机。

  第三个示例包括具有多个传输时机的帧结构。例如,如果TB在一个周期内的所有传输时机之后到达,则可在下一个周期内的传输时机执行传输。

  第四个(底部)示例包括具有多个传输时机的帧结构。例如,当发生冲突时,UE 102可能失去传输时机,然后真实(例如,实际)重复数量小于配置的数量。

  图4示出了用于重复的时域资源的其他示例。具体地,第一个(顶部)示例包括具有灵活数量的传输时机的帧结构。例如,传输时机可以位于周期内的任何时隙中,并且在任何时机错过、丢弃或冲突的情况下,传输时机的数量可以大于重复数量(例如,K=4)。

  第二个示例包括具有多个传输时机的帧结构。例如,如果TB在第一个传输时机之后到达,则可能仍然剩下4个传输时机。

  第三个示例包括具有多个传输时机的帧结构。例如,可在下一个周期开始之前(例如,在本周期内的最后一个传输时机)终止重复。

  第四个(底部)示例包括具有多个传输时机的帧结构。例如,UE 102可在发生冲突时跳过传输时机,然后在后续传输时机处继续重复,并且在K个重复完成之后终止,或者在本周期内的最后一个传输时机处终止。

  图5是示出用于下行链路的资源网格的一个示例的图示。图5所示的资源网格可以用于本文所公开的系统和方法的一些具体实施中。结合图1给出了关于资源网格的更多细节。

  在图5中,一个下行链路子帧1269可以包括两个下行链路时隙1283。NDLRB为服务小区的下行链路带宽配置,以NRBSC的倍数表示,其中NRBSC为频域中资源块1289的大小,表示为子载波的数量,并且NDLsymb为下行链路时隙1283中OFDM符号1287的数量。资源块1289可包括多个资源元素(RE)1291。

  对于PCell,NDLRB作为系统信息的一部分被广播。对于SCell(包括许可辅助接入(LAA)SCell),NDLRB通过专用于UE 102的RRC消息进行配置。对于PDSCH映射,可用RE 1291可以是其索引1在子帧中满足1≥1数据,开始并且/或者1数据,结束≥1的RE 1291。

  在下行链路中,可采用具有循环前缀(CP)的OFDM接入方案,该方案也可称为CP-OFDM。在下行链路中,可以传输PDCCH、增强PDCCH(EPDCCH)、PDSCH等。下行链路无线帧可包括多对下行链路资源块(RB),该下行链路资源块也被称为物理资源块(PRB)。下行链路RB对是用于分配由预定带宽(RB带宽)和时隙定义的下行链路无线资源的单元。下行链路RB对包括在时域内连续的两个下行链路RB。

  下行链路RB在频域内包括十二个子载波,并且在时域内包括七个(用于正常CP)或六个(用于扩展CP)OFDM符号。由频域内的一个子载波和时域内的一个OFDM符号定义的区域被称为资源元素(RE),并且通过时隙中的索引对(k,l)唯一地标识,其中k和l分别是频域和时域中的索引。尽管在本文中讨论了一个分量载波(CC)中的下行链路子帧,针对每个CC定义了下行链路子帧,并且下行链路子帧在CC之间基本上彼此同步。

  图6是示出用于上行链路的资源网格的一个示例的图示。图6所示的资源网格可以用于本文所公开的系统和方法的一些具体实施中。结合图1给出了关于资源网格的更多细节。

  在图6中,一个上行链路子帧1369可以包括两个上行链路时隙1383。NULRB是服务小区的上行链路带宽配置,以NRBSC的倍数表示,其中NRBSC是频域中资源块1389的大小,表示为子载波的数量,并且NULsymb是上行链路时隙1383中SC-FDMA符号1393的数量。资源块1389可包括多个资源元素(RE)1391。

  对于PCell,NULRB作为系统信息的一部分被广播。对于SCell(包括LAA SCell),NULRB通过专用于UE 102的RRC消息进行配置。

  在上行链路中,除了CP-OFDM之外,还可采用单载波频分多址(SC-FDMA)接入方案,该方案也被称为离散傅里叶变换扩频OFDM(DFT-S-OFDM)。在上行链路中,可传输PUCCH、PUSCH、PRACH等。上行链路无线帧可包括多对上行链路资源块。上行链路RB对是用于分配由预先确定的带宽(RB带宽)和时隙定义的上行链路无线资源的单元。上行链路RB对包括在时域内连续的两个上行链路RB。

  上行链路RB可包括频域中的十二个子载波以及时域中的七个(用于正常CP)或六个(用于扩展CP)OFDM/DFT-S-OFDM符号。由频域内的一个子载波和时域内的一个OFDM/DFT-S-OFDM符号定义的区域被称为RE,并且通过时隙中的索引对(k,l)唯一地标识,其中k和l分别是频域和时域中的索引。虽然本文讨论了一个分量载波(CC)中的上行链路子帧,但是上行链路子帧是针对每个CC定义的。

  图7示出了几个参数1401的示例。参数#1 1401a可以是基本参数(例如,参考参数)。例如,基本参数1401a的RE 1495a可以定义为在频域中具有15kHz的子载波间隔1405a,并且在时域中(即符号长度#1 1403a)具有2048Ts+Cp的长度(例如,160Ts或144Ts),其中Ts表示定义为1/(15000*2048)秒的基带采样时间单位。对于第i个参数,子载波间隔1405可等于15*2i和有效OFDM符号长度2048*2-i*Ts。这可使得符号长度为2048*2-i*Ts+CP长度(例如,160*2-i*Ts或144*2-i*Ts)。换句话讲,第i+1个参数的子载波间隔是第i个参数的子载波间隔的两倍,并且第i+1个参数的符号长度是第i个参数的符号长度的一半。图7示出了四个参数,但是系统可支持另一个数量的参数。此外,该系统不必支持第0个参数集至第I个参数集(i=0,1,...,I)中的全部。

  例如,如上所述的第一SPS资源上的第一UL传输可仅在参数#1上执行(例如,子载波间隔为15kHz)。此处,UE 102可基于同步信号获取(检测)参数#1。此外,UE 102可接收包括配置参数#1的信息(例如,切换命令)的专用RRC信号。专用RRC信号可以是UE特定信号。此处,第一SPS资源上的第一UL传输可在参数#1、参数#2(子载波间隔为30kHz)和/或参数#3(子载波间隔为60kHz)上执行。

  此外,如上所述的第二SPS资源上的第二UL传输可仅在参数#3上执行。在此,例如,UE 102可接收包括配置参数#2和/或参数#3的信息的系统信息(例如,主信息块(MIB)和/或系统信息块(SIB))。

  此外,UE 102可接收包括配置参数#2和/或参数#3的信息(例如,切换命令)的专用RRC信号。可在BCH(广播信道)和/或专用RRC信号上传输系统信息(例如,MIB)。系统信息(例如,SIB)可以包含在评估UE 102是否被允许接入小区和/或定义其他系统信息的调度时相关的信息。系统信息(SIB)可包含多个UE 102共用的无线电资源配置信息。即,专用RRC信号可包括用于UL传输中的每一个(例如,UL SCH传输中的每一个、PUSCH传输中的每一个)的多个参数配置(第一参数、第二参数和/或第三参数)中的每一个。此外,专用RRC信号可包括用于DL传输中的每一个的多个参数配置(第一参数、第二参数和/或第三参数)中的每一个(例如,PDCCH传输中的每一个)。

  图8示出了图7中所示的参数1501的子帧结构的示例。考虑到时隙1283包括NDLsymb(或NULsymb)=7个符号,第i+1个参数1501的时隙长度是第i个参数1501的时隙长度的一半,并且子帧中时隙1283(例如,1ms)的数量最终会翻倍。应当注意,无线帧可包括10个子帧,并且无线帧长度可等于10ms。

  图9示出了时隙1683和子时隙1607的示例。如果子时隙1607未由高层配置,则UE102和eNB/gNB 160可仅使用时隙1683作为调度单元。更具体地,可将给定传输块分配给时隙1683。如果子时隙1607由高层配置,则UE 102和eNB/gNB 160可使用子时隙1607以及时隙1683。子时隙1607可包括一个或多个OFDM符号。构成子时隙1607的OFDM符号的最大数量可为NDLsymb-1(或NULsymb-1)。

  子时隙长度可由高层信令配置。另选地,子时隙长度可由物理层控制信道(例如,通过DCI格式)来指示。

  子时隙1607可在时隙1683内的任何符号处开始,除非它与控制信道冲突。基于起始位置的限制,微时隙长度可存在限制。例如,长度为NDLsymb-1(或NULsymb-1)的子时隙1607可从时隙1683中的第二个符号开始。子时隙1607的起始位置可由物理层控制信道(例如,由DCI格式)来指示。另选地,子时隙1607的起始位置可来源于调度有关子时隙1607中的数据的物理层控制信道的信息(例如,搜索空间索引、盲解码候选索引、频率和/或时间资源索引、PRB索引、控制信道元素索引、控制信道元素聚合等级、天线端口索引等)。

  在配置子时隙1607的情况下,可将给定传输块分配给时隙1683、子时隙1607、聚合的子时隙1607或聚合的一个或多个子时隙1607以及时隙1683。该单元也可以是用于HARQ-ACK位生成的单元。

  图10示出了调度时间线1709的示例。对于正常的DL调度时间线1709a,DL控制信道被映射到时隙1783a的初始部分。DL控制信道1711调度同一时隙1783a中的DL共享信道1713a。用于DL共享信道1713a的HARQ-ACK(即,指示是否成功地检测到每个DL共享信道1713a中的传输块的每一个HARQ-ACK)经由在后一时隙1783b中的UL控制信道1715a被报告。在这种情况下,给定时隙1783可包含DL传输和UL传输中的一者。

  对于正常的UL调度时间线1709b,DL控制信道1711b被映射到时隙1783c的初始部分。DL控制信道1711b调度后一时隙1783d中的UL共享信道1717a。对于这些情况,DL时隙1783c和UL时隙1783d之间的关联定时(时间偏移)可由高层信令来固定或配置。另选地,其可由物理层控制信道(例如,DL分配DCI格式、UL授权DCI格式或另一DCI格式,诸如可在公共搜索空间中被监视的UE公共信令DCI格式)来指示。

  对于自给式基础DL调度时间线1709c,DL控制信道1711c被映射到时隙1783e的初始部分。DL控制信道1711c调度同一时隙1783e中的DL共享信道1713b。用于DL共享信道1713b的HARQ-ACK被报告为在UL控制信道1715b中,被映射在时隙1783e的结束部分。

  对于自给式基础UL调度时间线1709d,DL控制信道1711d被映射到时隙1783f的初始部分。DL控制信道1711d调度相同时隙1783f中的UL共享信道1717b。对于这些情况,时隙1783f可包含DL部分和UL部分,并且DL传输和UL传输之间可存在保护时段。

  自给式时隙的使用可基于自给式时隙的配置。另选地,自给式时隙的使用可基于子时隙的配置。还另选地,自给式时隙的使用可基于缩短的物理信道(例如,PDSCH、PUSCH、PUCCH等)的配置。

  图11示出了DL控制信道监视区域的示例。一组或多组PRB可被配置用于DL控制信道监视。换句话讲,控制资源组在频域中是一组PRB,在该组PRB内,UE 102尝试盲解码下行链路控制信息,其中PRB可以是或可以不是频率连续的,UE 102可具有一个或多个控制资源组,并且一个DCI消息可位于一个控制资源组中。在频域中,PRB是用于控制信道的资源单元大小(其可以包括或可以不包括解调参考信号(DM-RS))。DL共享信道可在比携带所检测的DL控制信道的符号更晚的OFDM符号处开始。另选地,DL共享信道可在携带所检测的DL控制信道的最后一个OFDM符号处开始(或在比该最后一个OFDM符号更早的符号处开始)。换句话讲,可支持至少在频域中对相同或不同UE 102的数据的控制资源组中的至少一部分资源进行动态重用。

  例如,UE 102可监视控制资源组(例如,CORESET)中的一个或多个DL控制信道的候选集。此处,一个或多个DL控制信道的候选可为可能映射、分配和/或传输一个或多个DL控制信道的候选。例如,一个或多个DL控制信道的候选由一个或多个控制信道元素(CCE)组成。此处,术语“监视”意味着UE 102尝试根据要监视的所有DCI格式来解码一个或多个DL控制信道的该候选集中的每个DL控制信道。即,UE 102可监视(例如,接收、检测)DL控制信道监视区域中的一个或多个DCI格式。

  此处,(例如,由gNB 160)分配给UE 102的一个或多个RNTI可用于DCI(例如,一个或多个DCI格式、一个或多个DL控制信道(例如,一个或多个PDCCH))的传输。也就是说,基于DCI生成的CRC(循环冗余校验)奇偶校验位(也简称为CRC)附加到DCI,并且在附加之后,CRC奇偶校验位由一个或多个RNTI加扰。UE 102可尝试解码(例如,盲解码、监视、检测)由一个或多个RNTI加扰的CRC奇偶校验位所附加到的DCI。也就是说,UE 102基于盲解码来检测DL控制信道(例如,PDCCH、DCI、一个或多个DCI格式)。也就是说,UE 102可利用由一个或多个RNTI加扰的CRC来解码一个或多个DL控制信道。也就是说,UUE 102可利用由一个或多个RNTI加扰的CRC来解码一个或多个DCI格式。也就是说,UE 102可利用由一个或多个RNTI加扰的CRC来监视一个或多个DL控制信道。即,UE 102可利用由RNTI加扰的CRC来监视一个或多个DCI格式。另外,UE 102可在USS(即,UE特定的搜索空间)和/或CSS(即,公共搜索空间)中检测一个或多个DCI格式。

  此处,一个或多个RNTI可包括C-RNTI(小区RNTI)、CS-RNTI(配置调度RNTI)、SI-RNTI(系统信息RNTI)、P-RNTI(寻呼RNTI)、RA-RNTI(随机接入RNTI)和/或临时C-RNTI。此处,SPS C-RNTI可以包括在CS-RNTI中。

  例如,C-RNTI可以是用于标识RRC连接和/或调度的唯一标识。另外,CS-RNTI(例如,SPS C-RNTI)可以是用于基于配置的授权调度传输的唯一标识。例如,CS-RNTI可以是用于基于配置的授权(例如,2类配置的授权)来激活和/或去激活传输的唯一标识。另外,RA-RNTI可以是用于随机接入过程的标识。另外,临时C-RNTI可用于随机接入过程(例如,用于指示基于争用的随机接入过程中的UL-SCH上的(重新)传输(例如,消息3传输、PUSCH传输))。

  此处,在一个或多个DL控制信道的一个或多个区域(例如,DL控制信道监视区域,CORESET)中设置(或定义、配置)公共搜索空间(CSS,UE共用的搜索空间)和/或用户设备搜索空间(USS,UE特定的搜索空间)。例如,CSS可用于将DCI传输到多个UE 102。也就是说,CSS可由多个UE 102共用的资源来定义。此处,CSS可用于将DCI传输到特定UE 102。也就是说,gNB 160可在CSS中传输旨在用于多个UE 102的一个或多个DCI格式和/或用于特定UE 102的一个或多个DCI格式。

  另外,USS可用于将DCI传输到特定UE 102。也就是说,USS由专用于某个UE 102的资源定义。可针对每个UE 102独立地定义USS。例如,USS可由具有基于无线电网络临时标识符(RNTI)(例如,C-RNTI)、无线电帧中的时隙号、聚合等级等确定的数量的CCE组成。一个或多个RNTI可由gNB 160分配。也就是说,可定义与下文所述的一个或多个RNTI中的每一者对应的USS中的每一者。例如,可为具有由C-RNTI和/或CS-RNTI加扰的CRC的一个或多个DCI格式定义USS。

  此处,gNB 160可通过使用RRC消息传输用于配置一个或多个控制资源组(即,一个或多个CORESET)的信息。此处,用于配置一个或多个CORESET的信息可被配置用于服务小区中的一个或多个下行链路BWP中的每一个。另外,对于每个CORESET,gNB 160可通过使用RRC消息传输用于指示搜索空间是CSS还是USS的信息。即,用于指示搜索空间是CSS还是USS的信息可被配置用于服务小区中的一个或多个下行链路BWP中的每一个。另外,对于CSSI和/或USS,gNB 160可通过使用RRC消息传输用于指示针对DCI格式0_0来监视PDCCH的信息。此处,用于指示针对DCI格式0_0来监视PDCCH的信息可被配置用于服务小区中的一个或多个下行链路BWP中的每一个。另外,对于CSSI和/或USS,gNB 160可通过使用RRC消息传输用于指示针对DCI格式0_0或DCI格式0_1来监视PDCCH的信息。此处,用于指示针对DCI格式0_0或DCI格式0_1来监视PDCCH的信息可被配置用于服务小区中的一个或多个下行链路BWP中的每一个。

  另外,对于CSS和/或USS,gNB 160可通过使用RRC消息传输用于指示PDCCH监视的一个或多个周期性(例如,一个或多个子帧、一个或多个时隙和/或一个或多个符号的一个或多个周期性)的信息。另外,对于CSSI和/或USS,gNB 160可通过使用RRC消息传输用于指示PDCCH监视的一个或多个偏移(例如,一个或多个子帧、一个或多个时隙和/或一个或多个符号的一个或多个偏移)的信息。并且,可至少基于PDCCH监视的一个或多个周期性和/或PDCCH监视的一个或多个偏移来定义一个或多个监视时机。即,UE 102可基于PDCCH监视的一个或多个周期性和/或PDCCH监视的一个或多个偏移来确定一个或多个PDCCH时机。例如,UE 102可基于PDCCH监视的一个或多个周期性和/或PDCCH监视的一个或多个偏移来确定CSS和/或USS(例如,用于DCI格式0_0的CSS、用于DCI格式0_0、DCI格式0_1的USS)的一个或多个PDCCH时机。

  图12示出了包括多于一个控制信道元素的DL控制信道的示例。当控制资源组跨越多个OFDM符号时,控制信道候选可被映射至多个OFDM符号或可被映射至单个OFDM符号。一个DL控制信道元素可被映射在由单个PRB和单个OFDM符号定义的RE上。如果多于一个DL控制信道元素用于单个DL控制信道传输,则可执行DL控制信道元素聚合。

  聚合的DL控制信道元素的数量被称为DL控制信道元素聚合等级。DL控制信道元素聚合等级可为1或2到整数幂。gNB 160可通知UE 102哪些控制信道候选被映射到控制资源组中的OFDM符号的每个子组。如果一个DL控制信道被映射到单个OFDM符号且不跨越多个OFDM符号,则DL控制信道元素聚合在一个OFDM符号内执行,即多个DL控制信道元素在一个OFDM符号内聚合。否则,可在不同OFDM符号中聚合DL控制信道元素。

  图13示出了UL控制信道结构的示例。UL控制信道可被映射在分别由PRB和频域和时域中的时隙限定的RE上。该UL控制信道可被称为长格式(或仅称为第一格式)。UL控制信道可映射在时域中的有限的OFDM符号上的RE上。这可以称为短格式(或仅称为第二格式)。具有短格式的UL控制信道可在单个PRB内的RE上映射。另选地,具有短格式的UL控制信道可在多个PRB内的RE上映射。例如,可应用交错映射,即可将UL控制信道映射至系统带宽内的每N个PRB(例如,5个或10个)。

  图14是示出gNB 2160的一个具体实施的框图。gNB 2160可包括高层处理器2123、DL发射器2125、UL接收器2133以及一个或多个天线2131。DL发射器2125可以包括PDCCH发射器2127和PDSCH发射器2129。UL接收器2133可以包括PUCCH接收器2135和PUSCH接收器2137。

  高层处理器2123可以管理物理层的行为(DL发射器和UL接收器的行为)并向物理层提供高层参数。高层处理器2123可从物理层获得传输块。高层处理器2123可向UE的高层发送/从UE的高层获取高层消息,诸如RRC消息和MAC消息。高层处理器2123可以向PDSCH发射器提供传输块,并且提供与传输块有关的PDCCH发射器传输参数。

  DL发射器2125可多路复用下行链路物理信道和下行链路物理信号(包括预留信号),并且经由发射天线2131对其进行发射。UL接收器2133可经由接收天线2131接收多路复用的上行链路物理信道和上行链路物理信号并对该上行链路物理信道和该上行链路物理信号进行解复用。PUCCH接收器2135可以向高层处理器2123提供UCI。PUSCH接收器2137可向高层处理器2123提供接收的传输块。

  图15是示出UE 2202的一个具体实施的框图。UE 2202可以包括高层处理器2223、UL发射器2251、DL接收器2243和一个或多个天线2231。UL发射器2251可包括PUCCH发射器2253和PUSCH发射器2255。DL接收器2243可包括PDCCH接收器2245和PDSCH接收器2247。

  高层处理器2223可管理物理层的行为(UL发射器和DL接收器的行为)并向物理层提供高层参数。高层处理器2223可从物理层获得传输块。高层处理器2223可向UE的高层发送/从UE的高层获取高层消息,诸如RRC消息和MAC消息。高层处理器2223可以向PUSCH发射器提供传输块并向PUCCH发射器2253提供UCI。

  DL接收器2243可经由接收天线2231接收多路复用的下行链路物理信道和下行链路物理信号并对它们进行解复用。PDCCH接收器2245可以向高层处理器2223提供DCI。PDSCH接收器2247可以向高层处理器2223提供接收的传输块。

  应当注意,本文所述的物理信道的名称是示例。可使用其他名称,诸如“NRPDCCH、NRPDSCH、NRPUCCH和NRPUSCH”、“新一代-(G)PDCCH、GPDSCH、GPUCCH和GPUSCH”等。

  图16示出了可在UE 2302中利用的各种部件。结合图16描述的UE2302可根据结合图1描述的UE 102来实施。UE 2302包括控制UE 2302的操作的处理器2303。处理器2303也可称为中央处理单元(CPU)。存储器2305(可包括只读存储器(ROM)、随机存取存储器(RAM),这两种存储器的组合或可存储信息的任何类型的设备)将指令2307a和数据2309a提供给处理器2303。存储器2305的一部分还可包括非易失性随机存取存储器(NVRAM)。指令2307b和数据2309b还可驻留在处理器2303中。加载到处理器2303中的指令2307b和/或数据2309b还可包括来自存储器2305的指令2307a和/或数据2309a,这些指令和/或数据被加载以供处理器2303执行或处理。指令2307b可由处理器2303执行,以实施上述方法。

  UE 2302还可包括外壳,该外壳容纳一个或多个发射器2358和一个或多个接收器2320以允许发送和接收数据。一个或多个发射器2358和一个或多个接收器2320可合并为一个或多个收发器2318。一个或多个天线2322a-n附接到外壳并且电耦接到收发器2318。

  UE 2302的各个部件通过总线系统2311(除了数据总线之外,还可包括电源总线、控制信号总线和状态信号总线)耦接在一起。然而,为了清楚起见,各种总线在图16中被示出为总线系统2311。UE 2302还可包括用于处理信号的数字信号处理器(DSP)2313。UE 2302还可包括对UE 2302的功能提供用户接入的通信接口2315。图16所示的UE 2302是功能框图而非具体部件的列表。

  图17示出了可在gNB 2460中利用的各种部件。结合图17描述的gNB 2460可根据结合图1描述的gNB 160来实施。gNB 2460包括控制gNB 2460的操作的处理器2403。处理器2403也可称为中央处理单元(CPU)。存储器2405(可包括只读存储器(ROM)、随机存取存储器(RAM)、这两种存储器的组合或可存储信息的任何类型的设备)向处理器2403提供指令2407a和数据2409a。存储器2405的一部分还可包括非易失性随机存取存储器(NVRAM)。指令2407b和数据2409b还可驻留在处理器2403中。加载到处理器2403中的指令2407b和/或数据2409b还可包括来自存储器2405的指令2407a和/或数据2409a,这些指令和/或数据被加载以供处理器2403执行或处理。指令2407b可由处理器2403执行,以实施上述方法。

  gNB 2460还可包括外壳,该外壳容纳一个或多个发射器2417和一个或多个接收器2478以允许发送和接收数据。一个或多个发射器2417和一个或多个接收器2478可合并为一个或多个收发器2476。一个或多个天线2480a-n附接到外壳并且电耦接到收发器2476。

  gNB 2460的各个部件通过总线系统2411(除了数据总线之外,该总线系统还可包括电源总线、控制信号总线和状态信号总线)耦接在一起。然而,为了清楚起见,各种总线在图17中被示出为总线系统2411。gNB 2460还可包括用于处理信号的数字信号处理器(DSP)2413。gNB 2460还可包括对gNB 2460的功能提供用户接入的通信接口2415。图17所示的gNB2460是功能框图而非具体部件的列表。

  图18是示出可在其中实施用于不具有授权的上行链路传输的系统和方法的UE2502的一个具体实施的框图。UE 2502包括发射装置2558、接收装置2520和控制装置2524。发射装置2558、接收装置2520和控制装置2524可被配置为执行结合上图1所述的功能中的一者或多者。上图16示出了图18的具体装置结构的一个示例。可实施其他各种结构,以实现图1的功能中的一者或多者。例如,DSP可通过软件实现。

  图19是示出可在其中实施用于不具有授权的上行链路传输的系统和方法的gNB2660的一个具体实施的框图。gNB 2660包括发射装置2623、接收装置2678和控制装置2682。发射装置2623、接收装置2678和控制装置2682可被配置为执行结合上图1所述的功能中的一者或多者。上图17示出了图19的具体装置结构的一个示例。可实施其他各种结构,以实现图1的功能中的一者或多者。例如,DSP可通过软件实现。

  术语“计算机可读介质”是指可由计算机或处理器访问的任何可用介质。如本文所用,术语“计算机可读介质”可表示非暂态且有形的计算机可读介质和/或处理器可读介质。以举例而非限制的方式,计算机可读介质或处理器可读介质可包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储设备、磁盘存储设备或其他磁存储设备,或者可用于携带或存储指令或数据结构形式的所需程序代码并且可由计算机或处理器访问的任何其他介质。如本文所用,磁盘和光盘包括压缩光盘(CD)、激光盘、光学光盘、数字通用光盘(DVD)、软磁盘及光盘,其中磁盘通常以磁性方式复制数据,而光盘则利用激光以光学方式复制数据。

  应当注意,本文所述方法中的一者或多者可在硬件中实现并且/或者使用硬件执行。例如,本文所述方法中的一者或多者可在芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等中实现,并且/或者使用芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等实现。

  本文所公开方法中的每一者包括用于实现所述方法的一个或多个步骤或动作。在不脱离权利要求书的范围的情况下,这些方法步骤和/或动作可彼此互换并且/或者合并为单个步骤。换句话讲,除非所述方法的正确操作需要特定顺序的步骤或动作,否则在不脱离权利要求书的范围的情况下,可对特定步骤和/或动作的顺序和/或用途进行修改。

  应当理解,权利要求书不限于上文所示的精确配置和部件。在不脱离权利要求书的范围的情况下,可对本文所述系统、方法和装置的布置、操作和细节进行各种修改、改变和变更。

  根据所述系统和方法在gNB 160或UE 102上运行的程序是以实现根据所述系统和方法的功能的方式控制CPU等的程序(使得计算机操作的程序)。然后,在这些装置中处理的信息在被处理的同时被暂时存储在RAM中。随后,该信息被存储在各种ROM或HDD中,每当需要时,由CPU读取以便进行修改或写入。作为存储有程序的记录介质,半导体(例如,ROM、非易失性存储卡等)、光学存储介质(例如,DVD、MO、MD、CD、BD等)、磁存储介质(例如,磁带、软磁盘等)等中的任一者都是可能的。此外,在一些情况下,通过运行所加载的程序来实现上述根据所述系统和方法的功能,另外,基于来自程序的指令并结合操作系统或其他应用程序来实现根据所述系统和方法的功能。

  此外,在程序在市场上有售的情况下,可分发存储在便携式记录介质上的程序,或可将该程序传输到通过网络诸如互联网连接的服务器计算机。在这种情况下,还包括服务器计算机中的存储设备。此外,根据上述系统和方法的gNB 160和UE 102中的一些或全部可被实现为作为典型集成电路的LSI。gNB 160和UE 102的每个功能块可单独地内置到芯片中,并且一些或全部功能块可集成到芯片中。此外,集成电路的技术不限于LSI,并且用于功能块的集成电路可利用专用电路或通用处理器实现。此外,如果随着半导体技术不断进步,出现了替代LSI的集成电路技术,则也可使用应用该技术的集成电路。

  此外,上述具体实施中的每一者所使用的基站设备和终端设备的每个功能块或各种特征可通过电路(通常为一个集成电路或多个集成电路)实施或执行。被设计为执行本说明书中所述的功能的电路可包括通用处理器、数字信号处理器(DSP)、专用或通用集成电路(ASIC)、现场可编程门阵列(FPGA),或其他可编程逻辑设备、分立栅极或晶体管逻辑器、或分立硬件部件、或它们的组合。通用处理器可为微处理器,或另选地,该处理器可为常规处理器、控制器、微控制器或状态机。通用处理器或上述每种电路可由数字电路进行配置,或可由模拟电路进行配置。此外,当由于半导体技术的进步而出现制成取代当前集成电路的集成电路的技术时,也能够使用通过该技术生产的集成电路。

  如本文所用,术语“和/或”应解释为表示一个或多个项目。例如,短语“A、B和/或C”应解释为表示以下任何一种:仅A、仅B、仅C、A和B(但不是C)、B和C(但不是A)、A和C(但不是B)或A、B和C全部。如本文所用,短语“至少一个”应该被解释为表示一个或多个项目。例如,短语“A、B和C中的至少一个”或短语“A、B或C中的至少一个”应解释为表示以下任何一种:仅A、仅B、仅C、A和B(但不是C)、B和C(但不是A)、A和C(但不是B)或者A、B和C的全部。如本文所用,短语“一个或多个”应被理解为指一个或多个项目。例如,短语“A、B和C的一个或多个”或短语“A、B或C的一个或多个”应解释为表示以下任何一种:仅A、仅B、仅C、A和B(但不是C)、B和C(但不是A)、A和C(但不是B)或者A、B和C的全部。

《用于不具有授权的上行链路传输的用户设备、基站和方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)